ProMinent®

Measuring, Control and Sensor Technology

Product catalogue 2023

Focus on **YOU**

Issued byr:

ProMinent GmbH
Im Schuhmachergewann 5–11
69123 Heidelberg
Germany
Telefon +49 6221 842–0
info@prominent.com
www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2023

Product Catalogue Volume 2

Measuring, Control and Sensor Technology

Precision by design

Precise sensor technology and high-performance measuring and control technology are the guarantee of process reliability when metering liquid media.

Chapter 1

A wealth of DULCOTEST sensors for precisely recording the most diverse parameters in real-time.

Chapter 2

Controllers introduce consistent quality into your process. From the simple conversion of measuring signals to controllers optimised for complex, application-specific control tasks.

Chapter 3

Fully assembled **measuring and control systems**, which are designed for measuring drinking water, cooling water and wastewater. The ready-wired plug & play modules, with perfectly matched components, are ready for fast and easy installation.

Chapter 4

Measuring and control systems for cooling water treatment

Chapter 5

Swimming pool water treatment

Focus on you

ProMinent is close to hand no matter where you are: 55 dedicated sales, production and service companies guarantee service and availability in close proximity to our customers. For many years this has meant a local presence for our customers in over 100 countries.

Our sales team will be happy to be of assistance should you have any questions about metering technology or water treatment. You will find the contact details of your local contact at

www.prominent.com/en/locations

Table of contents

Meas	surin	ng, Control and Sensor Technology	Page
1 (Sano	sor Technology DULCOTEST	11
	1.1	Overview of Sensor Technology DULCOTEST 1.1.1 Selection Guide	11
-	1.2	Amperometric Sensors DULCOTEST	15
	1.2	1.2.1 Amperometric Sensors for Chlorine, Bromine, Chlorine Dioxide, Chlorite, Ozone	
		Dissolved Oxygen, Peracetic Acid and Hydrogen Peroxide	,,
		1.2.2 DULCOTEST Sensors for Chlorine	16
		1.2.3 DULCOTEST Sensors for Free Chlorine	18
		1.2.4 DULCOTEST Sensors for Total Available Chlorine	31
		1.2.5 DULCOTEST Sensors for Total Chlorine	33
		1.2.6 DULCOTEST Sensors for Bromine	36
		1.2.7 DULCOTEST Sensors for Chlorine Dioxide	41
		1.2.8 DULCOTEST Sensors for Chlorite	46
		1.2.9 DULCOTEST Sensors for Ozone	48
		1.2.10 DULCOTEST Sensors for Dissolved Oxygen	50
		1.2.11 DULCOTEST Sensors for Peracetic Acid	52
		1.2.12 DULCOTEST Sensors for Hydrogen Peroxide	55
-	1.3	Sensors DULCOTEST for pH, ORP, Fluoride and Temperature	59
		1.3.1 Selection Guide for pH Sensors, ORP Sensors	59
		1.3.2 pH Sensors with SN6 or VARIO Pin Plug-In Head	62
		1.3.3 pH Sensors with Fixed Cable	80
		1.3.4 ORP Sensors with SN6 Plug-in Head	85
		1.3.5 ORP Sensors with Fixed Cable	98
		1.3.6 DULCOTEST Temperature Sensors	100
		1.3.7 DULCOTEST Sensors for Fluoride	100
-	1.4	DULCOTEST Sensors for Conductivity	102
		1.4.1 Conductivity Sensors	102
		1.4.2 2-Electrode Conductivity Sensors	106
		1.4.3 Inductive Conductivity Sensors	127
-	1.5	Turbidity Measuring Points DULCOTEST	131
		1.5.1 Turbidity Measuring Point DULCOTEST DULCO turb C	131
-	1.6	Accessories Sensor Technology	133
		1.6.1 Sensor Accessories	133
		1.6.2 Consumable Items for Sensors	136
		1.6.3 Sensor Bypass Armature Modular BAMa	139
		1.6.4 Identity Code Ordering System for Sensor Bypass Armature BAMa	144
		1.6.5 Sensor Bypass Fitting Type DGMa	146
		1.6.6 In-line Probe Housing for Sensors	149
		1.6.7 Immersion Fittings for Sensors	150
		1.6.8 Installation Fittings / Adapters	154
2 I	Mea	asuring and Control Technology	158
4	2.1	Measuring and Control Units DULCOMETER	158
		2.1.1 Overview of Controllers DULCOMETER	158
		2.1.2 Survey of Applications in Measuring and Control Technology	160

ProMinent®

Table of contents

/leasurin	ng, Control and Sensor Technology	Page
2.2	Controller DULCOMETER diaLog DACb	161
	2.2.1 Controller DULCOMETER diaLog DACb	161
	2.2.2 Identity Code Ordering System for diaLog DACb, Wall Mounting IP 67	165
	2.2.3 Function Upgrade for Measuring and Control System diaLog DACb	166
	2.2.4 DACb Application and Ordering Examples	167
	2.2.5 Application Examples, Treatment of Swimming Pool Water	168
	2.2.6 Application Examples, Potable Water Monitoring	170
	2.2.7 Application Examples, Waste Water Monitoring	173
	2.2.8 Application Examples in the Food Industry	175
	2.2.9 Odour Reduction Application Examples (Clarification Plants)	176
2.3	Controller DULCOMETER D1Cb/D1Cc	177
	2.3.1 Controller DULCOMETER D1Cb/D1Cc	177
	2.3.2 Identity Code Ordering System DULCOMETER D1Cb, Wall Mounting	180
	2.3.3 Identity Code Ordering System DULCOMETER D1Cc, Control Panel Mounting	182
	2.3.4 Identity Code Ordering System D1Ub, Subsequent Function Extension for D1Cb	184
	2.3.5 Identity Code Ordering System D1Uc, Subsequent Function Extension for D1Cc	184
	2.3.6 D1Cb and D1Cc Application and Ordering Examples	185
	2.3.7 Application Examples, Treatment of Swimming Pool Water	186
	2.3.8 Application Examples, Potable Water Monitoring	188
	2.3.9 Application Examples, Waste Water Monitoring	190
	2.3.10 Application Examples in the Food Industry	191
2.4	Controller DULCOMETER Compact	192
	2.4.1 Controller DULCOMETER Compact	192
	2.4.2 Identity Code Ordering System for DULCOMETER Compact	194
	2.4.3 Application and Ordering Examples for DULCOMETER Compact	195
	2.4.4 Application Examples, Treatment of Swimming Pool Water	196
	2.4.5 Application Examples, Potable Water Monitoring	197
	2.4.6 Application Examples, Waste Water Monitoring	198
2.5	Measuring and Control System DULCOMARIN 3 for Water Treatment in Public Swim-	199
	ming Pools 2.5.1 Measuring and Control System DULCOMARIN 3	199
	2.5.2 Configuration Examples for the Measuring and Control System DULCOMARIN 3	203
	2.5.3 Identity Code Ordering System DULCOMARIN 3	208
	2.5.4 Functional Module (F-module) for DULCOMARIN 3	200
	2.5.5 Webcam Function for DULCOMARIN 3	210
	2.5.6 Modbus RTU Gateway for PROFINET for DULCOMARIN 3	210
	2.5.7 Control Module for Chlorine Gas Metering Devices (R Module)2.5.8 Chlorine Sensors for DULCOMARIN II and DULCOMARIN 3	212 213
0.6		
2.6	Controllers for Cooling Tower Control 2.6.1 Overview of Cooling Tower Control	214 214
	2.6.2 Controller AEGIS X	214
	2.6.3 Controller AEGIS II	
		218
	2.6.4 Controller SlimFLEX 5a	223
	2.6.5 Controller AEGIS S	225

Table of contents

Me	asurin	g, Con	ntrol and Sensor Technology	Page
		266	DULCOTEST Sensor for Conductivity, Type CTFS	227
			Conductivity Sensor ICT 8-mA	228
	2.7		COMETER Transmitters	229
	2.1	2.7.1		229
			Identity Code Ordering System Measuring Transducer DMTa	231
				232
	2.8		uring and Test Systems	233
	2.0		Photometer Photometer	233
	2.9		ssories for Measuring and Control Devices	235
			Transmitter 4 20 mA (two-wire system)	235
3	Mea		and Control Systems for Potable Water and Waste Water	237
		tment		
	3.1		iew of Ordering System for Measuring and Control Points DULCOTROL DWCa	237
			Selection Guide	237
		3.1.2	Description of the Identity Code Specifications in the DULCOTROL DWCa Ordering System	237
	3.2	Meası	uring and Control Points DULCOTROL DWCa_P Potable Water/F&B	239
		3.2.1	Overview of DULCOTROL DWCa_Potable Water/F&B	239
		3.2.2	Permissible Measured Variable Combinations for DULCOTROL DWCa_P Potable Water/F&B	240
		3.2.3	Identity Code Ordering System, DULCODOS DWCa_P Potable Water/ F&B	241
		3.2.4	Examples of DULCOTROL DWCa_P Potable Water/F&B	243
	3.3	Meası	uring and Control Points DULCOTROL DWCa_W Waste Water	244
		3.3.1	Overview of DULCOTROL DWCa_W Waste Water	244
		3.3.2	Permissible Measured Variable Combinations for DULCOTROL DWCa_W Waste Water	245
		3.3.3	Identity Code Ordering System, DULCOTROL DWCA_W Waste Water	246
		3.3.4	Examples of DULCOTROL DWCa_W Waste Water	248
	3.4		ical Description of the Scope of Delivery of Measuring and Control Systems DUL- ROL DWCa	249
		3.4.1	Technical Description of Controllers	249
		3.4.2	Technical Description of Sensors	250
		3.4.3	Technical Description of Sensor Fittings	252
		3.4.4	Technical Description of the Hydraulic Connector/Pipework	253
		3.4.5	Technical Description of Optional Accessories	253
4		_	g and Control System for Cooling Water Treatment	254
	4.1		uring and Control System for Cooling Water Treatment	254
5	Mot		Measuring and Control System DULCODOS Cooling Water	254 259
5		_	Systems for Swimming Pool Water Treatment	
	5.1		CODOS Pool Swimming Pool Metering Systems	259
		5.1.1		259
		5.1.2	Metering System DULCODOS Pool Soft	261
		5.1.3	Metering System DULCODOS Pool Basic	264
		5.1.4	3 7	267
	F 0	5.1.5	Metering System DULCODOS Pool Professional	270
	5.2		enance Kits	275
		5.2.1	Buffer Solutions	275

Table of contents

Measuring, Control and Sensor Technology

Page

5.2.2 Maintenance Kits for Metering Pumps

275

New Measuring, Control and Sensor Technology Products

Controller AEGIS X

AEGIS X is a controller for treating cooling water in cooling towers and boilers.

In order to optimise the cooling process and prevent biological growth, deposits and corrosion, the controller continuously monitors the electrolytic conductivity and controls bleeding. Biocide metering based on time or measured values prevents contamination in the cooling tower.

With up to two satellite units, AEGIS X monitors and controls several cooling towers at the same time. The combination of main and satellite unit ensures truly excellent flexibility. This makes the controller perfectly suited to large cooling systems with many parameters, including corrosion.

Thanks to the large number of communication options, the cooling tower can be remotely controlled with ease. An individually adaptable web server makes simple management, tracking and data visualisation possible.

- Up to two satellite units can be added for additional inputs and outputs, allowing more sensors and pumps to be connected.
- Intuitive operation via the HMI (Human-Machine Interface) thanks to a clearly legible industrial display and robust keys for standard commands, such as calibration and monitoring.
- The adaptable web server permits simple configuration of process settings as well as monitoring and visualisation of process data.
- Extensive overview and control of the cooling tower processes: All process data and alarms can be communicated to the process control system via fieldbuses such as Modbus RTU.
- Advanced communication options: Various network protocols such as FTP or MQTT enable remote access and data management via Wi-Fi and LAN (Ethernet).
- Advanced calculations, such as cost calculation for managing chemicals.

For more information see page \rightarrow 216

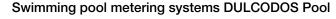
Sensor bypass armature Modular BAMa

ProMinent sensors for water treatment can be found in the modular bypass armature BAMa, which is simply installed in a bypass of the main process line. It is available in various variants, each perfectly designed for special water treatment applications – from potable water, water for the pools & wellness sector to industrial water.

- The sensors can be quickly and easily fitted and dismantled thanks to bayonet fittings.
- All parts requiring maintenance can be cleaned very well as they are easy to access without tools.
- Water consumption is minimised to just 5 l/h for flow-dependent sensors under ideal measurement conditions.
- The good particle mobility allows the bypass armature to be used in an even wider range of applications.
- Construction and material permit temperatures of up to 70 °C at a max. pressure of 3 bar, making it even more flexible to use.
- Thanks to higher pressure levels of up to 7 bar at 20 °C, sample water can return to the process, where permitted.
- The BAMa provides numerous options for setting optimum measurement conditions.

For more information see page →139

New Measuring, Control and Sensor Technology Products


Measuring and control system DULCOMARIN 3

DULCOMARIN 3 with new communication options as standard:

DULCOMARIN 3 with new communication options as standard:

- OPC UA via LAN/Ethernet: is one of the most important communication standards for Industry 4.0 and IIoT. OPC standardises access to devices and other systems in an industrial environment and allows data (of the same type and from different manufacturers) to be exchanged, e.g. with the building control system and directly with a PLC CPU. UA stands for "Unified Architecture" and identifies the latest specification of the platform-independent standard.
- BACnet® IP: **BACnet**® (**B**uilding **A**utomation and **C**ontrol Networks) is a network protocol for building automation and control. BACnet® simplifies communication between products from different manufacturers.

For more information see page →199

DULCODOS Pool DSPb, now with the new BAMa bypass armature and new identity code, providing more sensor selection options.

- Now with the new sensor bypass armature Modular BAMa
- Can be adapted to all disinfection processes by means of flexible sensor selection
- Application-optimised component configuration
- Simple, quick assembly
- Simple, menu-driven operation

For more information see page \rightarrow 259

DULCONNEX: IIoT Solution for Digital Fluid Management

Smart Process Monitoring - Any time, Anywhere

Improved process safety, reliability and transparency due to real-time monitoring, individual alarms and automated reports.

ProMinent's DULCONNEX is the cloud-based IIOT solution which enables digital fluid management by connecting smart pumps, controllers and sensors:

- DULCONNEX Platform
- DULCONNEX API
- DULCONNEX Gateway
- DULCONNEX Blue

DULCONNEX is based on robustly networked products that can be individually adapted to operating conditions. As all the components of a system are networked, metering pumps, disinfection systems, controllers and sensors can interact in an optimised manner – increasing process reliability and system efficiency.

Location-independent system monitoring in real time

With DULCONNEX, you always have access to all key data and measured values for your installations. Monitor the status of your system in real time and benefit from continuous documentation. Check your device data safely and reliably when you're not on site. Simply use the terminal device of your choice: smartphone, tablet or PC. Configurable alarms and messages inform you of relevant events 24/7.

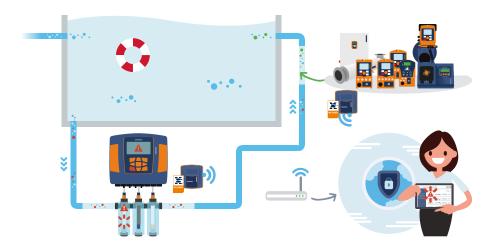
Be in a position to act promptly at all times with DULCONNEX. Whether cooling water, swimming pool water, industrial and process water or drinking water – DULCONNEX supports you in ensuring the reliable treatment of your fluids.

Reference Cooling Tower

In cooling water treatment, the AEGIS II cooling tower controller processes the most diverse parameters (e.g., pH, ORP, chlorine, conductivity, temperature and water flow) and controls the metering of biocides, inhibitors, stabilisers and dispersants, among others.

Apart from individually adaptable alarm conditions, connecting your cooling tower to DULCONNEX above all offers automatic and continuous documentation of the process data recorded by the AEGIS II and the connected metering pumps, enabling you to log the hygiene-compliant operation conforming to the relevant regulations without the risk of tampering.

Whether you wish to record the metering of chemicals or the water parameters affected by them, DULCON-NEX provides you with access to value diagrams and summarised reports anywhere and at any time. By connecting liquid level measuring devices, you can also avoid shortages when metering.



DULCONNEX: IIoT Solution for Digital Fluid Management

Reference Swimming Pool

DULCONNEX helps you to avoid downtimes, saving you the need to check on the individual controllers, pumps and UV systems in your pools. You can control the pH, chlorine and temperature values of controllers irrespective of your location, and also access the status of other connected components. Whether you wish to monitor the correct metering of chemicals or the status of disinfection systems, DULCONNEX immediately informs you by e-mail about every fault or limit violation, thanks to individually configurable alarms.

DULCONNEX continuously logs the water values of your swimming pool installations, making them available to you in the form of value diagrams and summarised reports. That way you can always ensure a smooth and carefree swimming pool operation.

Your Benefits of Digital Fluid Management

- Complete overview of all your devices and installations any time and from anywhere.
- Reliable saving of your complete value history including alarms and warnings that occur.
- Individual alarms by e-mail Keep up to date at all times.
- Continuous logging and automatic reports Documentation and evidence of correct operation.
- Clear visualisation Graphic display of value and parameter combinations.
- Access via the web Simply use any of your smart devices with an installed browser. You do not need an additional app nor a permanent link to the connected device.

The DULCONNEX Platform can be accessed at https://dulconnex.prominent.com. Please contact us for free access to try out the solution and send us your questions.

Privacy and data security

The architecture of DULCONNEX is already designed to achieve maximum safety and reliably protect your data. For example, there is a systematic separation of user-specific data and measured values. In addition, all measured values are anonymised internally and the entire system is regularly inspected by professional IT safety service providers for possible safety gaps.

Examples of relevant safety measures:

- Encryption in accordance with the latest state of the art
- Multiple redundant data memories
- Systematic control of the equipment ownership

DULCONNEX: IIoT Solution for Digital Fluid Management

Constantly growing portfolio of supported products

We are continuously and relentlessly working to extend our range of solutions. The list below contains just some of the devices and systems supported as standard to date. We also support the connection of additional components via flexibly combinable modules with digital or analogue inputs. This enables older devices (such as the chlorine dioxide system Bello Zon CDLb) or other manufacturers' components (such as liquid level gauges, water meters, gas detectors) to be connected.

Controller

- DULCOMETER diaLog DACb
- AEGIS II
- SlimFLEX 5a

Pumps

- gamma/ X
- gamma/ XL
- DULCOFLEX DFXa
- DULCOFLEX DFYa
- sigma/ X
- DULCOFLEX DF4a

Water treatment and disinfection systems

- UV systems DULCODES MP, LP/LP certified/LP F&B/LP-PE
- Chlorine dioxide systems Bello Zon CDLb, CDKd and CDVd
- Electrolysis system CHLORINSITU IIa 60-2500 g/h

Industrial standard signals via dedicated I/O modules

- Digital inputs (relays, with counters too)
- Analogue inputs (4...20 mA)

DULCONNEX Gateway

Our DULCONNEX Gateway enables all smart products to be connected to our web-based fluid management platform.

Using a gateway matched to the relevant product guarantees smooth and reliable operation. The customer must provide a WiFi access point with an internet connection in order to communicate with the DULCONNEX Platform.

	Suitable for product	Order no.
DULCONNEX Gateway AGIb	AEGIS II	1098723
DULCONNEX Gateway DACb	DULCOMETER diaLog	1098756
	DACb	

1.1 Overview of Sensor Technology DULCOTEST

1.1.1 Selection Guide

Selection guide for pH sensors DULCOTEST

Sensor type	Typical applications	Remarks	pH range	Max. temper- ature and max. pressure	Loading with parti- cles/solid matter in the appli- cation	Reference	Dia- phragm
PHES	Drinking water, swimming pool water		1 to 12	60°C/3 bar	None to low levels	Ag/AgCl	1x ceramic
PHEK	Swimming pool water, aquariums	Plastic sensor shaft for greater safety during handling, e.g. end customers in the private swimming pool sector	1 to 12	60°C / 3 bar	None to low levels	Ag/AgCl	1x ceramic
PHEP/ PHEPT	Drinking water, swimming pool water, process water	PHEPT with integrated temperature sensor	1 to 12	80°C / 6 bar	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
PHED	Process water, electro- plating	Chemically contaminated water, e.g. Cr^{6+} , CN^{-}	1 to 12			Ag/AgCI with AgCI reservoir	2x ceramic; double junction
PHEN	Chemically contaminated water, low-conductivity water ≥ 50 µS/cm	Reference electrolyte is intro- duced into the sensor using external bottles and can be topped up	1 to 12	80°C / no overpres- sure	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
PHER	Industrial and public waste water, cooling towers	Dirt-repellent PTFE diaphragm	1 to 12	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	1x PTFE
PHER-DJ	Reverse osmosis (conductivity $\geq 10~\mu\text{S}/$ cm), acid and alkaline gas scrubbers (without fluoride, HF), general applications with chemical pollution that may attack the reference system	Dirt-repellent PTFE diaphragm and a double junction to protect the reference system	1 to 12	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	2xPTFE; double junction
PHEI	Industrial and public waste water, cooling towers	Long service life thanks to large volume of reference electrolyte, double junction and large PTFE diaphragm, 3/4" NPT screw-in thread	1 to 12	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	1x PTFE; 1x ceramic; double junction
PHEX	Suspensions, sludge, emulsions	Open ring diaphragm	1 to 12	25°C / 16 bar and 100°C / 6 bar	Medium to high levels	Ag/AgCl with AgCl reservoir	Open ring diaphragm
PHEF	Media containing fluoride with low pH values, e.g. etching solutions contain- ing fluoride in electro- plating	Special pH glass with increased resistance to HF	0 to 12	50°C / 7 bar	Low to medium levels	Ag/AgCl	1x HDPE
PHEF-DJ	Media containing fluoride with low pH values, e.g. gas scrubbers where gases containing fluoride are scrubbed	Special pH glass with increased resistance to HF	1 to 12	60°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	2xPTFE; double junction
PHEP-H	Process water with high pH values (> pH 12)	Special pH glass with increased resistance to high pH values	3 to 14	80°C / 6 bar	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic

Note: All DULCOTEST pH and ORP sensors are made using lead-free glass (RoHS-compliant)

1.1 Overview of Sensor Technology DULCOTEST

	Selection	on guide for ORP sensors	DULCOT	EST			
Sensor type	Typical applications	Remarks	Material of sensor pin	Max. temper- ature and max. pressure	Loading with parti- cles/solid matter in the appli- cation	Reference	Dia- phragm
RHES Pt	Drinking water, swimming pool water		Platinum (Pt)	60°C/3 bar	None to low levels	Ag/AgCl	1x ceramic
RHES Au	Swimming pool water	ORP sensors with gold electrodes are not susceptible to hydrogen, which is produced through the generation of chlorine by open electrolysis systems. What's more, gold electrodes are well suited to ozone applications.	Gold (Au)	60°C / 3 bar			
RHEK Pt	Swimming pool water, aquariums	Plastic sensor shaft for greater safety during handling; e.g. end customers in the private swimming pool sector	Platinum (Pt)	60°C/3 bar	None to low levels	Ag/AgCl	1x ceramic
RHEKL Pt	Swimming pool water, aquariums	Horizontal installation is possible thanks to two diaphragms	Platinum (Pt)	60°C/3 bar	None to low levels	Ag/AgCl	2x ceramic
RHEP Pt	Drinking water, swimming pool water, process water		Platinum (Pt)	80°C / 6 bar	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
RHEP Au	Drinking water, swimming pool water, process water	ORP sensors with gold electrodes are not susceptible to hydrogen, which is produced through the generation of chlorine by open electrolysis systems What's more, gold electrodes are well suited to ozone applications	Gold (Au)	80°C / 6 bar	None to low levels	Ag/AgCI with AgCI reservoir	1x ceramic
RHEN Pt	Chemically contaminated water Low-conductivity water ≥ 50 µS/cm	Reference electrolyte is intro- duced into the sensor using external bottles and can be topped up	Platinum (Pt)	80°C / no overpres- sure	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
RHER Pt	Industrial and public waste water, cooling towers	Dirt-repellent PTFE diaphragm	Platinum (Pt)	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	1x PTFE
RHER-DJ	Reverse osmosis (conductivity ≥ 10 µS/cm) General applications with chemical pollution that may attack the reference system	Dirt-repellent PTFE diaphragm and a double junction to protect the reference system	Platinum (Pt)	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	2xPTFE; double junction
RHEIC	Industrial and public waste water, cooling towers	Long service life thanks to large volume of reference electrolyte, double junction and large PTFE diaphragm 3/4" NPT screw-in thread	Platinum (Pt)	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	1x PTFE; 1x ceram- ic; double junction
RHEX	Suspensions, sludge, emulsions	Open ring diaphragm	Platinum (Pt)	25°C / 16 bar and 100°C / 6 bar	Medium to high levels	Ag/AgCl with AgCl reservoir	Open ring diaphragm

Note: All DULCOTEST pH and ORP sensors are made using lead-free glass (RoHS-compliant)

1.1 Overview of Sensor Technology DULCOTEST

Selection guide for DULCOTEST amperometric sensors

Measured variable	Applications	Graduated meas- uring ranges	Compatible controllers	Sensor type		
Free chlorine	Drinking water, swimming pool water	0.01–100 mg/l	D1C, DAC	CLE 3-mA-xppm, CLE 3.1-mA-xppm		
Free chlorine	Process and waste water	10 - 200 mg/l	D1C, DAC	CLR 1-mA		
Free chlorine	Drinking water, swimming pool water	0.01 - 10 mg/l	DULCOMARIN	CLE 3-CAN-P-xppm, CLE 3.1-CAN-P-xppm		
Free chlorine	Swimming pool, unpolluted potable and process water, in-situ electrolysis (without diaphragm), in the event of film formation with hydrodynamic cleaning	0.02-10 mg/l	D1C, DAC, AE- GIS II, AEGIS X	CLO 1-mA-xppm		
Free chlorine	Swimming pool, unpolluted potable and process water, in-situ electrolysis (without diaphragm), in the event of film formation together with hydrodynamic cleaning	0.01-10 mg/l	DULCOMARIN	CLO 1-CAN-P-xppm		
Free chlorine	Hot water up to 70 °C (legionella), in-situ electrolysis, in the event of film formation together with hydrodynamic cleaning	0.02-2 mg/l	D1C, DAC, AE- GIS II, AEGIS X	CLO 2-mA-2ppm		
Free chlorine	Drinking water, swimming pool water	0.01-50 mg/l	DMT	CLE 3-DMT-xppm		
Free chlorine	Drinking water, swimming pool water	0.05-5 mg/l	COMPACT	CLB 2-µA-xppm		
Free chlorine	Drinking water, swimming pool water	0.05-5 mg/l	COMPACT	CLB 3-µA-xppm		
Free chlorine	Cooling water, process water and waste water, water with higher pH values (stable); sea water (free chlorine exists as bromine)	0.01-10 mg/l	D1C, DAC, AE- GIS II, AEGIS X	CBR 1-mA-xppm		
Total available chlo- rine / free chlorine	Swimming pool water with organic chlo- rine disinfectants and in-situ electrolysis (without diaphragm)	0.02 - 10 mg/l	D1C, DAC, AE- GIS II, AEGIS X	CGE 3-mA-ppm		
Total available chlorine / free chlorine	Swimming pool water with organic chlo- rine disinfectants and in-situ electrolysis (without diaphragm)	0.01–10 mg/l	DULCOMARIN	CGE 3-CAN-P-xppm		
Total chlorine	Drinking water, process water and waste water	0.01–20 mg/l	D1C, DAC, AE- GIS II, AEGIS X	CTE 1-mA-xppm		
Total chlorine	Drinking water, process water and waste water	0.01–10 mg/l	DMT	CTE 1-DMT-xppm		
Total chlorine	Drinking water, process water and waste water	0.01–10 mg/l	DULCOMARIN	CTE 1-CAN-P-xppm		
Combined chlorine	Swimming pool water	0.02-2 mg/l	DAC	CTE 1-mA-2 ppm + CLE 3.1-mA-2 ppm		
Combined chlorine	Swimming pool water	0.01–10 mg/l	DULCOMARIN	CTE 1-CAN-P-xppm + CLE 3.1-CAN-xppm		
Total available bromine	Cooling water, waste water, swimming pool water, spa pool water, bromine with BCDMH	0.01-10 mg/l	D1C, DAC	BCR 1-mA (replaces earlier type BRE 1)		
Total available bro- mine	Cooling water, swimming pool water, spa pool water with organic or inorganic bromine compounds	0.02-10 mg/l	DULCOMARIN	BRE 3-CAN-10ppm		
Free + combined bromine	Cooling water, process water, waste water, water with higher pH values (stable); sea water	0.02-20 mg/l	D1C, DAC, AE- GIS II, AEGIS X	CBR 1-mA-xppm		
Free + combined bromine	Cooling water, process water, waste water, water with higher pH values (stable); sea water	0.02-20 mg/l	DULCOMARIN	CBR 1-CAN-P-10 ppm		
Chlorine dioxide	Drinking water	0.01-10 mg/l	D1C, DAC	CDE 2-mA-xppm		
Chlorine dioxide	Bottle washing system	0.02-2 mg/l	D1C, DAC	CDP 1-mA-xppm		
Chlorine dioxide	Hot water up to 60 °C, cooling water, waste water, irrigation water	0.01-10 mg/l	D1C, DAC, DULCOMARIN	CDP 1-mA-xppm, CDR 1-CAN-xppm		
Chlorite	Drinking water, washing water	0.02–2 mg/l	D1C, DAC, DULCOMARIN	CLT 1-mA-xppm, CLT 1-CAN-xppm		
Ozone	Drinking water, swimming pool water	0.02-2 mg/l	D1C, DAC	OZE 3-mA-2 ppm		
Ozone	Process water, cooling water	0.01-10 mg/l	D1C, DAC	OZR 1-mA-xppm		

Overview of Sensor Technology DULCOTEST 1.1

Measured variable	Applications	Graduated meas- uring ranges	Compatible controllers	Sensor type
Dissolved oxygen	Clarification plant aeration tanks, fish farming, drinking water, surface water	0.1–20 mg/l	D1C, DAC	DO 3-mA-xppm
Dissolved oxygen	Clarification plant aeration tanks	0.1-10 mg/l	D1C, DAC	DO 2-mA-xppm
Peracetic acid	CIP (cleaning in place), aseptic foodstuff filling	1-2000 mg/l	D1C, DAC, AE- GIS II, AEGIS X	PAA 1-mA-xppm
Peracetic acid	Waste water, low concentrations	0.02-20 mg/l	D1C, DAC	PAA 2-3E-mA-xppm
Hydrogen peroxide	Clear water, fast control	1-2000 mg/l	DAC	PEROX-H2.10
Hydrogen peroxide	Process water, swimming pool water	20-2000 mg/l	D1C, DAC	PER1-mA-2000 ppm
Hydrogen peroxide	Swimming pool water, plant irrigation water, low concentrations	0.2–500 mg/l	D1C, DAC	PEROX H-3E-mA-xppm

Conductivity sensor selection guide

Conductivity > 20 mS/cm and/or film-forming medium and/or chemically aggressive medium

yes

inductive conductivity measurement

Compact controller can be used in the application?

yes

Do the following conditions exist? aggressive chemicals, with the exception of lyes and/or Temperatures > 80 °C and/or measured value < 200 μS/cm

for installation in pipes with adapter accessory, for immersion with immersion fitting accessory

↓ no

conductive conductivity measurement

↓ no

Further selection according to summary table:

- Measuring range
- Material (chemical compatibility)
- **Temperature**
- hydraulic process connection
- electrical connection
- Compatibility of measuring and control

Product ranges LF, LMP, CK, CCT

yes Series ICT 2

Installation in pipes with stainless steel flange accessory

For immersion with accessory: immersion fitting IMA - ICT 2

Type ICT 5 for installation

↓ no

in pipes Type ICT 5-

for immersion

1.2 Amperometric Sensors DULCOTEST

1.2.1

Amperometric Sensors for Chlorine, Bromine, Chlorine Dioxide, Chlorite, Ozone, Dissolved Oxygen, Peracetic Acid and Hydrogen Peroxide

The advantages at a glance:

- 12 measuring parameters available with analogue design, each for simple installation to the same fittings and controllers
- Application-specific sensor models permit optimum operation with varying process conditions
- Efficient process management by means of precise measurement in real-time
- Amperometric measuring principle means no interference caused by turbidity or discolouration
- Diaphragm-covered measuring electrodes ensure reliable operation and long service life even under adverse and variable process conditions

Note the following points for optimum operation of amperometric sensors:

- Use of DULCOMETER controllers
- Installation only in ProMinent bypass fittings type BAMa, DGMa or DLG III
- Specified flow between 30...60 l/h
- Chlorine measurement only with stable pH
- Regular calibration with a photometer (e.g. types DT)

Important:

No amperometric sensors are electrically isolated. When using with external devices (e.g. PLC), ensure that the supply voltage and analogue input signal are electrically isolated.

Amperometric Sensors DULCOTEST 1.2

1.2.2 **DULCOTEST Sensors for Chlorine**

Different forms of dissolved chlorine are present in water:

Free (effective) chlorine: Cl₂, HOCI (hypochlorous acid), OCI (hypochlorite) recommended sensors:

Types CLE, CLO, CLB, CBR, CGE 3, reference method: DPD1

Combined chlorine: Mono-, di-, trichloroamine. The measuring result of the type for free chlo-

rine is subtracted from the measurement result of type CTE (total chlorine).

Reference method: DPD4 minus DPD1

Total chlorine: Total of free and combined chlorine; recommended sensor: Type CTE,

reference method DPD4

Total available chlorine (organic combined chlorine):

Chlorine bound to (iso)cyanic acid/isocyanurate and the free (effective) chlorine resulting from it; recommended sensor: Type CGE, reference method DPD1

Applications:

Chlorine measurement in potable water, swimming pool water, cooling water, process water and waste water or water of comparable quality, as well as sea/salt water with up to 15% chloride content. For chlorine measurements at high pH values (8...9.5), we recommend sensor types CGE and CTE for total chlorine and total available chlorine. We recommend sensor types CBR, CGE 3, CLO and CLB for measuring free chlorine with

high pH values

Device connection: Do not use sensors CLE CLO, CLB and CBR in the presence of isocy-

anuric acid/chlorine stabilisers! Types CLE 3.1, CBR, CTE and CGE 2 operate incorrectly when chlorinating using electrolysis processes without a diaphragm. Sensors with the type designation -mA are used for controllers D1Cb, DAC and DULCOMARIN. A selection of the mA sensors is also compatible with the AEGIS II and AEGIS X devices. Sensors with the type designation -4P are used for the earlier WS controllers and for metering pumps with integral chlorine controllers. Sensors with the type designation DMT are used for DMT transducers. Sensors with the designation CAN are used with the swimming pool controller DULCOMARIN. Sensors CLB 1 and CLB 2 with the designation -µA do not have a signal trans-

former and only work with the Compact controller.

Amperometric Sensors DULCOTEST 1.2

Selection Guide

		CLE 3/ [CLR 1]	CLE 3.1	CLO 1	CLO 2	CLB 2/ CLB 3	CBR 1	CGE 3	CTE 1	BCR 1
Measured variable	Free chlorine	x, [x]	X	Х	Х	Х	X*	Х		
	Total available chlorine (cyanuric acid derivatives)							X		
	Total chlorine								Х	X**
Selectivity of free chlorine	Raised		X							
	Yes	x, [x]		Х	Х	X	X	X		
	No								Х	Х
Application	Public swimming pools	x	Х	X			Х	X	X***	
	Private swimming pools	x	Χ	Χ		Χ		Χ	X***	X****
	Drinking water	x	Х		Х	X	Х	X	Х	
	Cooling water						X		Х	Χ
	Waste water	[x]					Х		Χ	Χ
Disinfectant	Chlorine gas, hypochlorite, electrolysis (with diaphragm)	x, [x]	X	X	X	X	Х	X	X	
	Electrolysis (without dia- phragm)	x, [x]		X	X	X		X		
	Cyanuric acid derivatives containing chlorine							Х		
	BCDMH									Х
Specifica- tions	Measuring range [ppm]	0.01- 100, [10-200]	0.01-10	0.02-10	0.02-2	0.05-5	0.01-10	0.02-10	0.01-10	0.01 - 10
	pH range	5.5-8.0	5.5-8.0	5.0-9.0	5.0-9.0	5.0-9.0	5.0-9.5	5.5-9.5	5.5-9.5	5.0 - 9.5
	Temperature [°C]	5-45	5-45	5-45	5-70	5-45	5-9.5	5-45	5-45	5-45
	Max. pressure [bar]	1	1	8	8	3	1	3	3	1
Installation	Open drain	х	Х	Х	Х	Х	Х	Х	Х	Х
	Direct installation in the circuit			X	X	Х				

as well as free and combined bromine (see Chap. 1.3.6: "Bromine Sensors")

as well as total available bromine (see Chap. 1.3.6: "Bromine Sensors")

and pools on cruise ships

in combination with the sensor for free chlorine **** type CBR 1 for determining combined chlorine

Ø 25

221

1.2 Amperometric Sensors DULCOTEST

1.2.3 DULCOTEST Sensors for Free Chlorine

Sensor for Free Chlorine CLE 3-mA

Standard sensor for measuring free chlorine in clear water. For operation on controllers with 4-20 mA input

Your Benefits

- Measured variable: free chlorine, no significant cross-sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or substances in the water

Technical Data

Measured variable Free chlorine with a pH value < 8

Reference method DPD1
pH-range 5.5...8.0
Temperature 5...45 °C
Max. pressure 1.0 bar

Flow DGMa, DLG III: 30...60 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated Free chlorine as against combined chlorine, even if there is not an excess

of it

.

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants with

organic chlorine, e. g. based on cyanuric acid, are unsuitable

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III
Controllers D1C, DAC, AEGIS II, AEGIS X

Typical applications CLE 3-mA-0,5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming

pools (surfactant-free).

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle, tech- Amperometric, 2 electrodes, diaphragm-covered

nology

Selectivity

	Measuring range	Order no.	
CLE 3-mA-0.5 ppm	0.010.5 mg/l	792927	
CLE 3-mA-2 ppm	0.022.0 mg/l	792920	
CLE 3-mA-5 ppm	0.055.0 mg/l	1033392	
CLE 3-mA-10 ppm	0.1010.0 mg/l	792919	
CLE 3-mA-20 ppm	0.2020.0 mg/l	1002964	
CLE 3-mA-50 ppm	0.5050.0 mg/l	1020531	
CLE 3-mA-100 ppm	1.00100.0 mg/l	1022786	

Chlorine sensors complete with 100 ml of electrolyte

Amperometric Sensors DULCOTEST 1.2

Sensor for Free Chlorine CLE 3.1-mA

Ø 25

221

Sensor for the measurement of free chlorine in clear water with higher selectivity towards combined chlorine. For use on controllers with 4-20 mA input

Your Benefits

- Measured variable: free chlorine, no cross-sensitivity to combined chlorine (chloramines), even if there is an
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or substances in the water

Measured variable Free chlorine (hypochlorous acid HOCI) with high levels of combined

chlorine; for determining the combined chlorine with a DAC controller and

sensor for total chlorine type CTE 1-mA

Reference method 5.5...8.0 pH-range Temperature 5...45 °C 1.0 bar Max. pressure

Flow DGMa, DLG III: 30...60 I/h

BAMa: 5...100 l/h (depending on design) Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

Selectivity Free chlorine as against combined chlorine, even if there is an excess of it Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants with

organic chlorine, e. g. based on cyanuric acid, are unsuitable

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers D₁C

Typical applications Potable water with higher volumes of combined chlorine, swimming pools.

To determine the combined chlorine from the difference: Total chlorine

minus free chlorine in the controller DAC.

Resistance to Salts, acids, alkalis. Not surfactants Amperometric, 2 electrodes, diaphragm-covered

Measuring principle, tech-

nology

	Measuring range	Order no.	
CLE 3.1-mA-0.5 ppm	0.010.5 mg/l	1020530	
CLE 3.1-mA-2 ppm	0.022.0 mg/l	1018369	
CLE 3.1-mA-5 ppm	0.055.0 mg/l	1019398	
CLE 3.1-mA-10 ppm	0.1010.0 mg/l	1018368	

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Measuring lines, see sensor accessories, page → 133

Ø 25

169

Amperometric Sensors DULCOTEST 1.2

Sensor for Free Chlorine CLE 3-DMT

Standard sensor for measuring free chlorine in clear water. For operation on ProMinent transmitters type

Your Benefits

- Measured variable: free chlorine, no significant cross-sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or substances in the

Technical Data

Measured variable free chlorine DPD1 Reference method pH-range 5.5...8.0 Temperature 5...45 °C Max. pressure 1.0 bar

Flow DGMa, DLG III: 30...60 l/h BAMa: 5...100 l/h (depending on design)

Supply voltage 3.3 V DC (5 P)

0...1 V DC, uncalibrated, not temperature-compensated, not electrically Output signal

isolated

About the integrated Pt 1000. The temperature compensation is carried Temperature measurement

out in DMT.

Selectivity Free chlorine as against combined chlorine, even if there is not an excess

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants with

organic chlorine, e. g. based on cyanuric acid, are unsuitable

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers

Typical applications CLE 3-mA-0,5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming

pools (surfactant-free).

Resistance to Salts, acids, alkalis. Not surfactants Amperometric, 2 electrodes, diaphragm-covered

Measuring principle, tech-

nology

	Measuring range	Order no.	
CLE 3-DMT-5 ppm	0.015.0 mg/l	1005511	
CLE 3-DMT-50 ppm	0.1050.0 mg/l	1005512	

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Measuring lines, see sensor accessories, page \rightarrow 133.

Amperometric Sensors DULCOTEST 1.2

Sensor for free chlorine CLE 3-CAN

Ø 25

253

Standard sensor for measuring free chlorine in clear water. For use on controllers with CAN-bus connec-

Your Benefits

- Measured variable: free chlorine, no significant cross-sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or substances in the
- Operation on the CAN-bus with all the associated benefits

Technical Data

Measured variable free chlorine Reference method DPD1 pH-range 5.5...8.0 Temperature 5...45 °C Max. pressure 1.0 bar

DGMa, DLG III: 30...60 l/h Flow

BAMa: 5...100 l/h (depending on design)

Supply voltage Via CAN-interface (11 - 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated

Selectivity Free chlorine as against combined chlorine, even if there is not an excess

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants with

organic chlorine, e. g. based on cyanuric acid, are unsuitable

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III Controllers **DULCOMARIN**

Typical applications CLE 3-mA-0,5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming

pools (surfactant-free).


Salts, acids, alkalis. Not surfactants Resistance to

Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CLE 3-CAN-10 ppm	0.0110.0 mg/l	1023425	

Chlorine sensors complete with 100 ml of electrolyte

Ø 25

253

1.2 Amperometric Sensors DULCOTEST

Sensor for free chlorine CLE 3.1-CAN

Sensor for the measurement of free chlorine in clear water with higher selectivity towards combined chlorine. For use on controllers with CAN-bus connection

Your Benefits

- Measured variable: free chlorine, no cross-sensitivity to combined chlorine (chloramines) even if there is an excess of it
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or substances in the water
- Operation on the CAN-bus with all the associated benefits

Technical Data

Measured variable Free chlorine with high levels of combined chlorine; for determining the

combined chlorine with a DULCOMARIN and sensor for total chlorine type

CTE 1-CAN DPD1

Reference method DPD1
pH-range 5.5...8.0
Temperature 5...45 °C
Max. pressure 1.0 bar

Flow DGMa, DLG III: 30...60 I/h

BAMa: 5...100 l/h (depending on design) **Supply voltage**Via CAN-interface (11 – 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated

Selectivity free chloring

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants with

organic chlorine, e. g. based on cyanuric acid, are unsuitable

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III
Controllers DULCOMARIN

Typical applications Drinking water with higher levels of combined chlorine; swimming pool. To

determine the combined chlorine from the difference: Total chlorine minus

free chlorine in the controller DULCOMARIN.

Resistance to Salts, acids, alkalis. Not surfactants

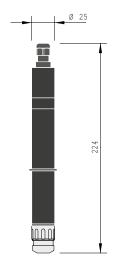
Measuring principle, tech- Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CLE 3.1-CAN-10 ppm	0.0110.0 mg/l	1023426	

Chlorine sensors complete with 100 ml of electrolyte

1.2 Amperometric Sensors DULCOTEST


Sensor for Free Chlorine CLO 1-mA

Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 45 $^{\circ}$ C (1 bar) or 8 bar (25 $^{\circ}$ C). For operation with controllers with 4-20 mA input. Also suitable for use in film-forming water with optional "hydrodynamic cleaning".

Your Benefits

- Measured variable: free chlorine, no significant cross-sensitivity to combined chlorine (chloramines)
- Use when sample water is returned to the process line
- Use at higher pressures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by an open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9
- Also suitable for use in film-forming water with optional "hydrodynamic cleaning".

Technical Data

Measured variable
Reference method
pH-rangefree chlorine
DPD1Temperature5.0...9.0Max. pressure8.0 bar (25 °C)

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis without

diaphragm with electrodes in the process

Process integrationBypass: open outlet or return of the sample water into the process line,

inline: direct installation into the tubes with the INLI fitting

Sensor fitting BAMa: up to 7 bar/20 °C

DGMa up to 6 bar/30 °C
DLG III up to 1 bar/55 °C
INLI up to 7 bar/40 °C

Controllers D1C, DAC, AEGIS II, AEGIS X

Typical applicationsSwimming pools, uncontaminated potable water and process water, and can also be used together with diaphragm-free electrolysis processes. Can

also be used in conjunction with hydrodynamic cleaning even in biofilm-forming water, or water containing lime, iron or manganese.

Resistance to Surfactants, films with using hydrodynamic cleaning

Measuring principle, tech
Amperometric, 3 electrodes, no diaphragm

nology

	Measuring range	Order no.	
CLO 1-mA-2 ppm	0.022.0 mg/l	1033871	
CLO 1-mA-10 ppm	0.1010.0 mg/l	1033870	

Accessories for hydrodynamic cleaning

	Order no.	
Cleaning set CLO/DGMa with flow nozzle CLO for DGMa and cleaning	1104286	
balls (approx. 100)		
Flow nozzle CLO	1104264	
Cleaning balls (approx. 100)	1104267	
Cleaning set CLO/BAMa for CLO sensors in conjunction with sensor	1113881	
bypass armature BAMa		

1.2 Amperometric Sensors DULCOTEST

Sensor for free chlorine CLO 1-CAN

Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 45 $^{\circ}$ C (1 bar) or 8 bar (25 $^{\circ}$ C). For use on controllers with CAN-bus connection. Also suitable for use in film-forming water with optional "hydrodynamic cleaning".

Your Benefits

- Measured variable: free chlorine, no significant cross-sensitivity to combined chlorine (chloramines)
- Use with return of the sample water to the process line
- Use at higher pressures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9
- Also suitable for use in film-forming water with optional "hydrodynamic cleaning".

Technical Data

Measured variable
Reference method
pH-rangeFree chlorine
DPD1Temperature5.0...9.0Max. pressure8.0 bar (25 °C)

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 11...30 V (via CAN interface)

Output signal Digital (CANopen), uncalibrated, temperature-compensated, electrically

isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis without

diaphragm with electrodes in the process

Process integrationBypass: open outlet or return of the sample water into the process line,

inline: direct installation into the tubes with the INLI fitting

Sensor fitting BAMa: up to 7 bar/20 °C

DGMa up to 6 bar/30 °C DLG III up to 1 bar/55 °C INLI up to 7 bar/40 °C

Controllers DULCOMARIN 3, DULCOMARIN II only with hardware after 06.02.2014

from software version 3035 or later

Typical applications Swimming pools, uncontaminated potable water and process water, and

can also be used together with diaphragm-free electrolysis processes. Can also be used in conjunction with hydrodynamic cleaning even in water that

forms biofilms, or containing lime, iron or manganese.

Resistance to Salts, acids, lyes, surfactants, films of dirt, films when using hydrodynamic

cleaning

Measuring principle, tech-

nology

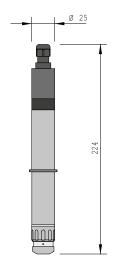
Amperometric, 3 electrodes, no diaphragm

	Measuring range	Order no.	
CLO 1-CAN-10 ppm	0.1010.0 mg/l	1122057	

Accessories for hydrodynamic cleaning

	Order no.	
Cleaning set CLO/DGMa with flow nozzle CLO for DGMa and cleaning	1104286	
balls (approx. 100)		
Flow nozzle CLO	1104264	
Cleaning balls (approx. 100)	1104267	
Cleaning set CLO/BAMa for CLO sensors in conjunction with sensor	1113881	
bypass armature BAMa		

Amperometric Sensors DULCOTEST 1.2


Sensor for Free Chlorine CLO 2-mA

Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 70 °C or 8 bar (25 °C). For operation with controllers with 4-20 mA input. Also suitable for use in film-forming water with optional "hydrodynamic cleaning".

Your Benefits

- Measured variable: free chlorine, no significant cross-sensitivity to combined chlorine (chloramines)
- Use when sample water is returned to the process line
- Use at higher pressures/temperatures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by an open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9
- Also suitable for use in film-forming water with optional "hydrodynamic cleaning"

Technical Data

Measured variable Free chlorine DPD1 Reference method 5.0...9.0 pH-range Temperature 5...70 °C 8.0 bar (25 °C) Max. pressure

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis without

diaphragm with electrodes in the process

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the tubes with the INLI fitting

Sensor fitting BAMa: up to 3 bar/70 °C

DGMa up to 1 bar/60 °C DLG III up to 1 bar/55 °C INLI up to 2 bar/70 °C

Controllers D1C, DAC, AEGIS II, AEGIS X Typical applications

Hot water up to 70 °C, combating legionella, uncontaminated potable

water and industrial service water, can also be used together with dia-

phragm-free electrolysis processes. Surfactants, films with using hydrodynamic cleaning

Resistance to Measuring principle, tech-

Amperometric, 3 electrodes, no diaphragm

nology

	Measuring range	Order no.	
CLO 2-mA-2 ppm	0.022.0 mg/l	1033878	

Accessories for hydrodynamic cleaning

	Order no.	
Cleaning set CLO/DGMa with flow nozzle CLO for DGMa and cleaning	1104286	
balls (approx. 100)		
Flow nozzle CLO	1104264	
Cleaning balls (approx. 100)	1104267	
Cleaning set CLO/BAMa for CLO sensors in conjunction with sensor	1113881	
bypass armature BAMa		

1.2 **Amperometric Sensors DULCOTEST**

Sensor for Free Chlorine CLB 2-µA

120

Cost-effective, simple sensor for the measurement of free chlorine in clear water, even with a changing media temperature. Use even when electrolysis processes are used for disinfection at up to 45 °C/3 bar. For operation with the Compact controller DCCa

Your Benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Cost-effective due to its simple construction without separate wear parts
- Simple, cost-effective maintenance without handling of the diaphragm caps
- Minimisation of faults by electrolysis systems without diaphragm in which the electrodes are immersed directly into the sample water by an open sensor (no diaphragm)
- Measurement of free chlorine up to pH 9 and use at high pressure of up to 8 bar by the absence of a diaphragm

Technical Data

Measured variable free chlorine

Measuring range 0.05 - 5.0 mg/l, can be used for short-term shock chlorination up to 10

> mg/l DPD1

Reference method pH-range 5.0...9.0 5...45 °C Temperature Max. pressure 3.0 bar

Flow DGMa, DLG III: 60...80 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage Only for compact controllers

Output signal Non-amplified primary current signal, not temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis without

diaphragm with electrodes in the process Bypass: open sample water outlet, inline: direct installation into the pipe-

Process integration work

Sensor fitting BAMa, DGMa, DLG III Controllers Compact controller

Typical applications Swimming pools, potable water, can also be used with membrane-free

chlorine production electrolysis processes, even with varying media tem-

Massiring range

peratures.

Resistance to surfactants

Measuring principle, tech-

nology

Amperometric, 3 electrodes, no diaphragm

	weasuring range	Order no.	
CLB 2-µA-5 ppm	0.055.0 mg/l	1038902	

1.2 Amperometric Sensors DULCOTEST

Sensor for Free Chlorine CLB 3-µA

120

12

Cost-effective, simple sensor for the measurement of free chlorine in clear water when the media temperature is constant. Use even when electrolysis processes are used for disinfection at up to 45 °C/3 bar. For operation with the Compact controller DCCa

Your Benefits

- Measured variable: free chlorine, no significant cross-sensitivity to combined chlorine (chloramines)
- Cost-effective due to its simple construction without separate wear parts
- Simple, cost-effective maintenance without handling of the diaphragm caps
- Minimisation of faults by electrolysis systems without diaphragm in which the electrodes are immersed directly into the sample water by an open sensor (no diaphragm)
- Measurement of free chlorine up to pH 9 and use at high pressure of up to 8 bar thanks to the absence of a diaphragm
- Suitable for sea water

Measured variable free chlorine

0.05 - 5.0 mg/l: linear, can be used for shock chlorination up to 10.0 mg/l Measuring range

Reference method DPD1 pH-range 5.0...9.0 Electrolytic conductivity 0.05...50 mS/cm Temperature 5...45 °C Max. pressure 3.0 bar

DGMa, DLG III: 60...80 I/h Flow

BAMa: 5...100 l/h (depending on design)

Supply voltage Only for compact controllers

Output signal Non-amplified primary current signal, not temperature-compensated,

uncalibrated, not electrically isolated

Temperature measurement

Free chlorine as against combined chlorine Selectivity

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis without

diaphragm with electrodes in the process

Process integration Bypass: open sample water outlet, inline: direct installation into the pipe-

work; fixed or replaceable (replaceable fitting)

Sensor fitting BAMa, DGMa, DLG III

Electrical Connection Fixed cable, 1 m, 4 wires with cable end sleeves

Controllers Compact controller

Swimming pools, potable water, sea water; also suitable for use with dia-Typical applications

phragm-free electrolysis processes for chlorine generation.

Resistance to surfactants

Measuring principle, tech-Amperometric, 3 electrodes, no diaphragm

nology

	Measuring range	Order no.	
CLB 3-µA-5 ppm	0.055.0 mg/l	1104626	

Ø 25

221

Amperometric Sensors DULCOTEST 1.2

Sensor for Free Chlorine CBR 1-mA

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use with controllers with 4-20 mA input

Your Benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Technical Data

Measured variable free chlorine, free bromine, combined bromine, DBDMH (1,3-di-

brom-5,5-dimethyl-hydantoin)

Reference method DPD1 pH-range 5...9.5 Temperature 1...40 °C Max. pressure 1.0 bar

DGMa: 20...80 l/h Flow DLG III: 40...100 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Free chlorine as against combined chlorine Selectivity

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, bromide + hy-

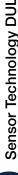
pochlorite, DBDMH

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III Controllers D1C, DAC, AEGIS II, AEGIS X

Typical applications Cooling water, process water, waste water, water with higher pH values

(stable pH), contaminated swimming pool water. Contaminated swimming pool water. In swimming pools to determine the combined chlorine from the difference: Total chlorine minus free chlorine. Raw water for drinking


water treatment.

Resistance to Salts, acids, alkalis, surfactants, dirt films Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CBR 1-mA-0.5 ppm	0.010.5 mg/l *	1038016	
CBR 1-mA-2 ppm	0.022.0 mg/l *	1038015	
CBR 1-mA-5 ppm	0.055.0 mg/l *	1052138	
CBR 1-mA-10 ppm	0.1010.0 mg/l *	1038014	

Measuring range based on chlorine. When measuring bromine, the lower and upper limit of the measuring range are increased by the factor 2.25, therefore for example CBR 1-mA-0.5ppm: 0.02 ...1.1 ppm.

Amperometric Sensors DULCOTEST 1.2

Sensor for free and combined bromine BRE 1-CAN

Ø 25

257

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use on controllers with CAN-bus connection.

Your Benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Technical Data

Measured variable free chlorine, free bromine, combined bromine, DBDMH (1,3-di-

brom-5,5-dimethyl-hydantoin)

Reference method DPD1 pH-range 5...9.5 Temperature 1...40 °C Max. pressure 1.0 bar

Flow DGMa: 20...80 l/h DLG III: 40...100 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 11...30 V DC (via CAN interface)

Output signal Digital (CANopen), uncalibrated, temperature-compensated, electrically

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, bromide + hy-

pochlorite, DBDMH

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers DULCOMARIN 3, DULCOMARIN II only with hardware after 06.02.2014

from software version 3035 or later

Typical applications Cooling water, process water, waste water, water with higher pH values

(stable pH), contaminated swimming pool water. Contaminated swimming pool water. In swimming pools to determine the combined chlorine from the difference: Total chlorine minus free chlorine. Raw water for drinking

water treatment.

Resistance to Dirt films, biofilms, surfactants

Measuring principle, tech-

nology

Amperometric, 2 electrodes, diaphragm-covered

Measuring range Order no. CBR 1-CAN-10 ppm 1122056 0.01...10.0 mg/l

Ø 25

221

Amperometric Sensors DULCOTEST 1.2

Sensor for Free Chlorine CLR 1-mA

Sensor for free chlorine above 10 ppm in contaminated washing water for use with controllers with 4-20

Your Benefits

- Measured variable free chlorine for high concentrations of up to 1,000 ppm
- Diaphragm-covered sensor prevents faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm

Technical Data

Measured variable free chlorine Reference method DPD1 pH-range 5.5...8.0 Temperature 5...45 °C Max. pressure 1.0 bar

Flow DGMa, DLG III: 40...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers D1C, DAC

Typical applications Salad, vegetable and poultry washing water, contaminated process and

> waste water. Salts, acids, alkalis, surfactants, dirt films

Resistance to Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

Measuring range Order no. CLR 1-mA-200 ppm 10.0...200 mg/l 1047978

Important note: Measuring range from 10.0 ... 1,000 mg/l on request

Amperometric Sensors DULCOTEST 1.2

1.2.4 **DULCOTEST Sensors for Total Available Chlorine**

Sensor for total available and free chlorine CGE 3-mA

Ø 25

221

Sensor for total available chlorine, such as derivatives of chloro(iso)cyanuric acid, without disturbance when used in swimming pools where disinfection is provided by electrolysis processes. Also suitable for use as a sensor for free chlorine. For operation with controllers with 4-20 mA input

Your Benefits

- Measured variable: total available chlorine, for instance disinfectant with organic chlorine, such as derivatives of chloro(iso)cyanuric acid
- Measured variable: free chlorine without interference with the presence of cyanuric acid
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water (without diaphragm)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or substances in the
- Hydrophilic diaphragm guarantees the permeability of chloro(iso)cyanuric acid derivatives towards the measuring electrodes
- The special reaction system of the electrolyte allows the total available chlorine to be determined and use at a high pH of up to 9.5

Technical Data

Process integration

Measured variable Free chlorine and total available chlorine: Total of organically bound chlorine

(e.g. bound to cyanuric acid) and free chlorine

Reference method DPD1 pH-range 5.5...9.5 Temperature 5...45 °C Max. pressure 3.0 bar

DGMa, DLG III: 30...60 l/h Flow

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity total available chlorine and free chlorine as against combined chlorine (chloramines)

Disinfection process Disinfectants with organic chlorine, e.g. based on cyanuric acid, chlorine

gas, hypochlorite, electrolysis Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III D1C, DAC, AEGIS II, AEGIS X Controllers

Swimming pool water; combined disinfection processes with chloro(iso)cy-Typical applications

anuric acid derivatives and electrolysis. Water of a similar quality to potable

water with a higher pH of up to 9.5.

Resistance to Surfactants, cyanuric acid

Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CGE 3-mA-2 ppm	0.022.0 mg/l	1047959	
CGE 3-mA-10 ppm	0.1010.0 mg/l	1047975	

Ø 25

221

Sensor Technology DULCOTEST

1.2 Amperometric Sensors DULCOTEST

Sensor for total available and free chlorine CGE 3-CAN

Sensor for total available chlorine, such as derivatives of chloro(iso)cyanuric acid when used in swimming pools. Also suitable for use as a sensor for free chlorine. For use on controllers with CAN-bus connection

Your Benefits

- Measured variable: total available chlorine, for instance disinfectant with organic chlorine, such as derivatives of chloro(iso)cvanuric acid
- Measured variable: free chlorine without interference with the presence of cyanuric acid
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water (without diaphragm)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or substances in the
- Hydrophilic diaphragm guarantees the permeability of chloro(iso)cyanuric acid derivatives towards the measuring electrodes
- The special reaction system of the electrolyte allows the total available chlorine to be determined and use at a high pH of up to 9.5
- Operation on the CAN-bus with all the associated benefits

Technical Data

Measured variable Free chlorine and total available chlorine: Total of organically bound chlorine

(e.g. bound to cyanuric acid) and free chlorine

Reference method pH-range 5.5...9.5 Temperature 5...45 °C 3.0 bar Max. pressure

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage Via CAN interface (11 - 30 V DC) Output signal

Uncalibrated, temperature compensated, electrically isolated Selectivity total available chlorine and free chlorine as against combined chlorine

(chloramines)

Disinfection process Disinfectants with organic chlorine, e.g. based on cyanuric acid, chlorine

gas, hypochlorite, electrolysis

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

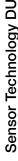
DULCOMARIN 3, DULCOMARIN II with hardware before 06.02.2014 Controllers

from software version 3027 or later, with hardware after 06.02.2014 from

software version 3033 or later

Swimming pool water, disinfection processes with chloro(iso)cyanuric acid Typical applications

derivatives and electrolysis. Water of a similar quality to potable water with


a higher pH of up to 9.5.

Resistance to Surfactants, cyanuric acid

Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

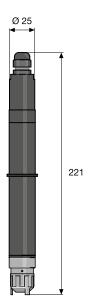
nology

	Measuring range	Order no.	
CGE 3-CAN-10 ppm	0.0110.0 mg/l	1047977	

1.2 Amperometric Sensors DULCOTEST

1.2.5

DULCOTEST Sensors for Total Chlorine


Sensor for Total Chlorine CTE 1-mA

Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For use on controllers with mA input

Your Benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5

Technical Data

Measured variableTotal chlorineReference methodDPD4pH-range5.5...9.5Temperature5...45 °CMax. pressure3.0 bar

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

 Output signal
 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Non-selective, cross-sensitive towards many oxidation agents

Disinfection processChlorine gas, hypochlorite, electrolysis with diaphragm, monochloramine

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers D1C, DAC, AEGIS II, AEGIS X

Typical applicationsCTE 1-mA-0.5 ppm: Potable water; CTE 1-mA-2/5/10 ppm: Potable,

industrial, process, waste water. In swimming pools combined with CLE

3.1 to detect combined chlorine.

Resistance to surfactants

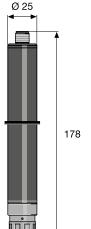
Measuring principle, tech- Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CTE 1-mA-0.5 ppm	0.010.5 mg/l	740686	
CTE 1-mA-2 ppm	0.022.0 mg/l	740685	
CTE 1-mA-5 ppm	0.055.0 mg/l	1003203	
CTE 1-mA-10 ppm	0.1010.0 mg/l	740684	
CTE 1-mA-20 ppm	0.2020.0 mg/l	1116253	

Chlorine sensors complete with 50 ml of electrolyte

1.2 Amperometric Sensors DULCOTEST


Sensor for Total Chlorine CTE 1-DMT

Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For operation with the transmitter DMT

Your Benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5

Technical Data

Measured variableTotal chlorineReference methodDPD4pH-range5.5...9.5Temperature5...45 °CMax. pressure3.0 bar

Flow DGMa, DLG III: 30...60 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 3.3 V DC (5 P)

Output signalUncalibrated, not temperature-compensated, not electrically isolatedSelectivityNon-selective, cross-sensitive towards many oxidation agents

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, monochloramine

Process integration Bypass: open sample water outlet Sensor fitting BAMa, DGMa, DLG III

Controllers DMT

Typical applications Potable, industrial, process, waste water.

Resistance to surfactants

Measuring principle, tech- Amperometric, 2 electrodes, diaphragm-covered

oloav

	Measuring range	Order no.	
CTE 1-DMT-10 ppm	0.0110.0 mg/l	1007540	

Chlorine sensors complete with 50 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

01.01.2023

Measuring lines, see sensor accessories, page → 133

Sensor for total chlorine CTE 1-CAN

Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For use on controllers with CAN-bus connection

Your Benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl-), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5
- Operation on the CAN-bus with all the associated benefits

Sensor for connection to a CAN interface (e.g. DULCOMARIN swimming pool controller)

Ø 25 257

Technical Data

Measured variable Total chlorine Reference method DPD4 pH-range 5.5...9.5 5...45 °C **Temperature** Max. pressure 3.0 bar

DGMa, DLG III: 30...60 l/h Flow

BAMa: 5...100 l/h (depending on design)

Supply voltage Via CAN-interface (11 - 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated Selectivity Non-selective, cross-sensitive towards many oxidation agents

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, monochloramine

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers DULCOMARIN 3, DULCOMARIN II only with hardware after 06.02.2014

from software version 3035 or later

Typical applications Potable, industrial, process, waste water.

Resistance to surfactants

Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CTE 1-CAN-10 ppm	0.0110.0 mg/l	1023427	

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

1.2.6 DULCOTEST Sensors for Bromine

Bromination agents

The following stabilised bromination agents are frequently used for disinfection during water treatment:

- BCDMH (1-Bromo-3-Chloro-5,5-Dimethyl-Hydantoin), marketed under trade names such as Brom-Sticks®
- DBDMH (1,3-Dibromo-5,5-Dimethyl-Hydantoin) marketed under trade names such as Albrom 100[®]
- N-bromamide sulfonate

These bromination agents are initially available as solids (tablets, sticks, pellets) and are transferred via "bromine chutes" into a saturated aqueous solution, that contains the free bromine (HOBr, OBr) and the carrier molecule. The free bromine and the halogen (bromine, chlorine) still available in the carrier molecule is jointly referred to as "Total available bromine". This solution is metered during the process.

Free bromine is generated directly without a carrier by metering of sodium-calcium hypochlorite + acid + sodium bromide, e.g. the Acti-Brom® process (Nalco company) or through the metering of sodium-calcium hypochlorite into seawater (bromide containing).

Bromamines are designated as combined bromine, which are more reactive when compared with chloramines (combined chlorine).

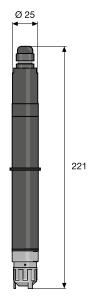
Applications

Typical applications are in swimming pools, whirlpools, sea water and cooling circuits. Particular attention must be paid to the quality of the sample water in cooling circuits and, where necessary, compatibility with other chemicals used (e.g. corrosion inhibitors) must be checked.

The photometric DPD measurement method (e.g. with DT 1B), calculated and displayed as bromine, is recommended as a comparison method for calibrating the bromine sensor. If the photometric DPD measurement method for "chlorine" is used, the measured value must be multiplied by a factor of 2.25 for conversion to "bromine".

Sensor selection

- The sensor type BCR 1 and calibrating/checking it by means of the DPD4 method is recommended for measuring stabilised bromination agents, such as BCDMH and N-bromamide sulfonate.
- The sensor type CBR 1 and calibrating/checking it by means of the DPD1 method is recommended for measuring free bromine from sodium hypochlorite and bromide or free bromine from DBDMH (splits off free bromine only) or bromine compounds, which are produced during disinfection (using sodium hypochlorite or ozone) of seawater. The CBR 1 can likewise be used to measure combined bromine (bromamines), calibrated and checked using the DPD1 method.
- It is essential that the sensor type BRE 3-CAN, calibrated and checked using the DPD4 method, is used to measure bromination agents using the measuring and control system DULCOMARIN II.


Sensor for Total Available Bromine BCR 1-mA (Replaces Earlier Type BRE 1)

Sensor for the disinfectant BCDMH and other oxidative-acting bromine-organic disinfectants and total chlorine even in contaminated water and/or for high pH values of up to 9.5. For use on controllers with mA

Your Benefits

- Measured variable: total available bromine from BCDMH (1-bromo-3-chloro-5,5-dimethylhydantoin)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water, N-bromamide sulfonate
- Resistance to blocking is achieved by the use of an electrolyte with an antimicrobial effect (less blocking by biofilms) and by a large-pored diaphragm (less blocking by solid particles/dirt)
- Use with high pH values by optimisation of the electrolyte diaphragm system

Technical Data

Measured variable Total available bromine from BCDMH (1-bromo-3-chloro-5,5-dimethylhy-

dantoin) and N-bromamido-sulphonate, total chlorine

Reference method 5.0...9.5 pH-range Temperature 5...45 °C Max. pressure 1.0 bar

Flow DGMa, DLG III: 60...80 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Non-selective, cross-sensitive towards many oxidation agents

Disinfection process BCDMH (1-bromo-3-chloro-5,5-dimethyl-hydantoin), N-bromamide sul-

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III Controllers D1C, DAC, AEGIS II, AEGIS X

Typical applications Cooling water, process water, waste water, swimming pool water, water

with higher pH values (stable pH).

Dirt films, biofilms, surfactants Resistance to Amperometric, 2 electrodes, diaphragm-covered

Measuring principle, tech-

BCR 1-mA-0.5 ppm BCR 1-mA-2 ppm BCR 1-mA-10 ppm

nology

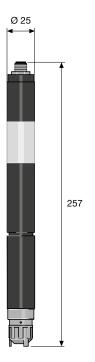
Measuring range	Order no.	
0.010.5 mg/l	1041697	
0.022.0 mg/l	1040115	

0.10...10.0 mg/l

1041698

Sensor Technology DULCOTEST

Sensor for total available bromine BRE 3-CAN



Sensor for free and combined bromine, also for use with slightly contaminated water. For use on controllers with CAN-bus connection

Your Benefits

- Measured variable: total available bromine from BCDMH and other oxidative-acting bromine organic
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Use with high pH values by optimisation of the electrolyte diaphragm system
- Operation on the CAN-bus with all the associated benefits

Sensor for connection to a CAN interface (e.g. swimming pool controller DULCOMARIN)

Technical Data

Measured variable Total available bromine

Reference method For DBDMH, free bromine: DPD1. For BCDMH: DPD4

pH dependence If the pH changes from pH 7 to pH 8, the sensor sensitivity changes

a) for DBDMH and free bromine by around 10 %

b) for BCDMH by around 25 %

Temperature 5...45 °C Max. pressure 3.0 bar

DGMa, DLG III: 30...60 l/h Flow

BAMa: 5...100 l/h (depending on design)

Supply voltage Via CAN-interface (11 - 30 V)

Uncalibrated, temperature compensated, electrically isolated Output signal Selectivity Non-selective, cross-sensitive towards many oxidation agents Disinfection process DBDMH (1,3-dibromo-5,5-dimethyl-hydantoin), BCDMH (1-bromo-3-chloro-5,5-dimethyl-hydantoin), free bromine (HOBr, OBr)

Bypass: open sample water outlet

Process integration Sensor fitting BAMa, DGMa, DLG III Controllers **DULCOMARIN**

Typical applications swimming pools/whirlpools.

Resistance to surfactants

Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
BRE 3-CAN-10 ppm	0.0210.0 mg/l	1029660	

Note: a mounting kit (order no. 815079) is required for initial fitting of the bromine sensors in the in-line probe housing DLG III.

Measuring lines, see sensor accessories, page → 133

Sensor for Free and Combined Bromine CBR 1-mA (Replaces Earlier Type BRE 2)

Ø 25

221

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use with controllers with 4-20 mA input

Your Benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Technical Data

Measured variable free chlorine, free bromine, combined bromine, DBDMH (1,3-di-

brom-5,5-dimethyl-hydantoin)

Reference method DPD1 pH-range 5...9.5 **Temperature** 1...40 °C Max. pressure 1.0 bar

DGMa: 20...80 l/h Flow DLG III: 40...100 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, bromide + hy-

pochlorite, DBDMH

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III Controllers D1C, DAC, AEGIS II, AEGIS X

Typical applications Cooling water, process water, waste water, water with higher pH values

(stable pH), contaminated swimming pool water. Contaminated swimming pool water. In swimming pools to determine the combined chlorine from the difference: Total chlorine minus free chlorine. Raw water for drinking

water treatment.

Resistance to Salts, acids, alkalis, surfactants, dirt films Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CBR 1-mA-0.5 ppm	0.010.5 mg/l *	1038016	
CBR 1-mA-2 ppm	0.022.0 mg/l *	1038015	
CBR 1-mA-5 ppm	0.055.0 mg/l *	1052138	
CBR 1-mA-10 ppm	0.1010.0 mg/l *	1038014	

Measuring range based on chlorine. When measuring bromine, the lower and upper limit of the measuring range are increased by the factor 2.25, therefore for example CBR 1-mA-0.5ppm: 0.02 ...1.1 ppm.

Ø 25

257

1.2 **Amperometric Sensors DULCOTEST**

Sensor for free and combined bromine BRE 1-CAN

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use on controllers with CAN-bus connection.

Your Benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Technical Data

Measured variable free chlorine, free bromine, combined bromine, DBDMH (1,3-di-

brom-5,5-dimethyl-hydantoin)

Reference method DPD1 pH-range 5...9.5 Temperature 1...40 °C Max. pressure 1.0 bar

DGMa: 20...80 l/h Flow DLG III: 40...100 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 11...30 V DC (via CAN interface)

Output signal Digital (CANopen), uncalibrated, temperature-compensated, electrically

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, bromide + hy-

pochlorite, DBDMH

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers DULCOMARIN 3, DULCOMARIN II only with hardware after 06.02.2014

from software version 3035 or later

Typical applications Cooling water, process water, waste water, water with higher pH values

(stable pH), contaminated swimming pool water. Contaminated swimming pool water. In swimming pools to determine the combined chlorine from the difference: Total chlorine minus free chlorine. Raw water for drinking

water treatment.

Resistance to Dirt films, biofilms, surfactants Amperometric, 2 electrodes, diaphragm-covered

Measuring principle, tech-

nology

	Measuring range	Order no.	
CBR 1-CAN-10 ppm	0.0110.0 mg/l	1122056	

1.2.7 DULCOTEST Sensors for Chlorine Dioxide

Selection Guide

Sensor type		CDE 2-mA	CDP 1-mA	CDR 1-mA
Application		Potable water	Bottle washing system	Cooling water, waste water, agriculture, hot water
Measuring ranges		0.01-10.0	0.02-2.00	0.01-10.0
Temperature	°C	5 45	10 45	1 55
Temperature compensation		internal	external	internal
Max. pressure	bar	1.0	3.0	3.0
pH range		4.0 11.0	5.5 10.5	1.0 10.0
Response time	S	120	60	180
Run-in period	h	2-6	4-12	2-6
Surfactant-resistance		no	yes	yes
Contamination resistance		no	under certain con- ditions	yes
Cross-sensitivity		Ozone	Ozone, chlorine	Ozone

Ø 25

221

Amperometric Sensors DULCOTEST 1.2

Chlorine Dioxide Sensor CDE 2-mA

Standard sensor for the measurement of chlorine dioxide without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, no cross-sensitivity towards free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water

Technical Data

Measured variable Chlorine dioxide (CIO₂)

DPD1 Reference method pH-range 4.0...11.0 Cross sensitivity Ozone 5...45 °C Temperature Max. pressure 1.0 bar

Flow DGMa, DLG III: 60...80 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

4-20 mA \approx measuring range, temperature-compensated, uncalibrated, not Output signal

electrically isolated

Response time sensor t₉₀ 120 s

Selectivity Chlorine dioxide selective towards free chlorine, chlorite and chlorate

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers D₁C

Typical applications Uncontaminated drinking water (surfactant-free).

Resistance to Salts, acids, alkalis. Not surfactants

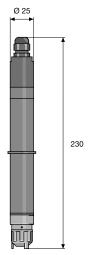
Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CDE 2-mA-0.5 ppm	0.010.5 mg/l	792930	
CDE 2-mA-2 ppm	0.022.0 mg/l	792929	
CDE 2-mA-10 ppm	0.1010.0 mg/l	792928	

Chlorine dioxide sensors complete with 100 ml of electrolyte

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the in-line probe housing DLG III.


Chlorine Dioxide Sensor CDP 1-mA

Sensor for the measurement of chlorine dioxide with a fast response time, for example in bottle-washing systems. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide without interference caused by surfactants
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Fast response time through open-pored diaphragm and external temperature measurement

Technical Data

Measured variable Chlorine dioxide (CIO₂)

DPD1 Reference method pH-range 5.5...10.5 Cross sensitivity Ozone, chlorine 10...45 °C **Temperature** Max. pressure 3.0 bar

DGMa, DLG III: 40...60 l/h Flow

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, not temperature-compensated, uncalibrated,

not electrically isolated

Temperature measurement Separate temperature measurement needed for compensation

Response time sensor t_{an}

Selectivity Chlorine dioxide as against chlorite and chlorate

Process integration Bypass: open sample water outlet

Sensor fitting We would recommend installing the sensor together with a Pt 100 temper-

ature sensor in fittings BAMa, DGMa, DLG III

Controllers D1C and DAC with automatic temperature correction only Typical applications Process water containing surfactants (bottle washing machines).

Resistance to Surfactants, slight films of dirt

Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CDP 1-mA-2 ppm	0.022.0 mg/l	1002149	

Chlorine dioxide sensors complete with 100 ml of electrolyte

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the in-line probe housing DLG III.

Chlorine Dioxide Sensor CDR 1-mA

Sensor for the measurement of chlorine dioxide for all kinds of water, including hot and contaminated water. Without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, without cross-sensitivity towards free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 60 °C (short term) by appropriate sensor materials

Technical Data

 $\begin{tabular}{ll} \textbf{Measured variable} & Chlorine dioxide (ClO_2) \end{tabular}$

Reference method pH-range 1.0...10.0
Cross sensitivity Ozone
Temperature 1...55 °C
Max. pressure 3.0 bar

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC

Output signal 4-20 mA temperature-compensated, uncalibrated, not electrically isolated

Response time sensor t_{90} 3 min. Selectivity Chlorite

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers D1C

Typical applications Contaminated industrial, process water, containing surfactants, cooling

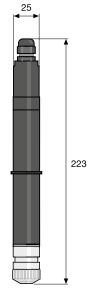
water, irrigation water, slightly contaminated waste water, warm water. Surfactants, slight films of dirt, water-soluble chemicals, solids/dirt, biofilms

0.10...10.0 mg/l

1033404

Measuring principle, tech- Amperometric, 2 electrodes, diaphragm-covered

nology

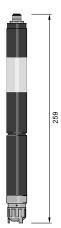

Resistance to

CDR 1-mA-10 ppm

 CDR 1-mA-0.5 ppm
 0.01...0.5 mg/l
 1033762

 CDR 1-mA-2 ppm
 0.02...2.0 mg/l
 1033393

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the in-line probe housing DLG III.


Chlorine Dioxide Sensor CDR 1-CAN

Sensor for the measurement of chlorine dioxide for all kinds of water, including hot and contaminated water. Without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, without cross sensitivity to free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 60 °C (short term) by appropriate sensor materials
- Operation on the CAN-bus with all the associated benefits

Technical Data

Measured variable Chlorine dioxide (CIO₂)

Reference method DPD1
pH-range 1.0...10.0
Cross sensitivity Ozone
Temperature 5...45 °C
Max. pressure 1.0 bar

Flow DGMa, DLG III: 30...100 I/h

BAMa: 5...60 l/h (depending on design)

Supply voltage Via CAN-interface (11 – 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated

 $\begin{array}{ll} \text{Response time sensor t}_{90} & 3 \text{ min.} \\ \text{Selectivity} & \text{Chlorite} \end{array}$

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III
Controllers DULCOMARIN

Typical applications Contaminated industrial, process water, containing surfactants, cooling

water, irrigation water, slightly contaminated waste water. Surfactants, water-soluble pollutants, solids/dirt, biofilms Amperometric, 2 electrodes, diaphragm-covered

Measuring principle, tech- Ampei

nology

Resistance to

	Measuring range	Order no.	
CDR 1-CAN-10 ppm	0.0110.0 mg/l	1041155	

Complete with 100 ml of electrolyte, connecting cable - CAN M12 5-pin 0.5 m, T-distributor M12 5-pin CAN

1.2.8

DULCOTEST Sensors for Chlorite

Chlorite Sensor CLT 1-mA

Sensor for monitoring the disinfection by-product chlorite in compliance with potable water regulations. Without cross-sensitivity towards chlorine dioxide, chlorate and chlorine. For operation on controllers with 4-20 mA input

Your Benefits

- Online monitoring of the disinfection by-product chlorite
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- No interference by chlorine dioxide/chlorine/chlorate
- Online monitoring improves process reliability
- Online monitoring replaces expensive laboratory analysis

221

Technical Data

Measured variable Chlorite anion (CIO₂-)

Reference method DPD method, chlorite in the presence of chlorine dioxide

pH-range 6.5...9.5

Cross sensitivity reducing chemicals, e. g. Fe²⁺, Mn²⁺

Temperature 1...40 °C **Max. pressure** 1.0 bar

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Chlorite selective towards chlorine dioxide, chlorate and free chlorine

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers D10

Typical applications Monitoring of chlorine dioxide treated potable water or similar water. The

selective measurement of chlorite alongside chlorine dioxide, chlorine and

chlorate is possible.

Resistance to surfactant

Measuring principle, tech- Amperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
CLT 1-mA-0.5 ppm	0.020.5 mg/l	1021596	
CLT 1-mA-2 ppm	0.102.0 mg/l	1021595	

Chlorite sensors complete with 50 ml of electrolyte.

Note: A mounting kit (order no. 815079) is required for initial fitting of the chlorite sensors in the in-line probe housing DLG III.

The DT4 photometer is recommended for calibration of the chlorite sensor.

Chlorite Sensor CLT 1-CAN

Sensor for monitoring the disinfection by-product chlorite in compliance with potable water regulations. Without cross-sensitivity towards chlorine dioxide, chlorate and chlorine. For use on controllers with CAN-bus connection

Your Benefits

- Online monitoring of the disinfection by-product chlorite
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- No interference by chlorine dioxide/chlorine/chlorate
- Online monitoring improves process reliability
- Online monitoring replaces expensive laboratory analysis
- Operation on the CAN-bus with all the associated benefits

Technical Data

Measured variable Chlorite anion (CIO₂-)

Reference method DPD method, chlorite in the presence of chlorine dioxide

pH-range 6.5...9.

Cross sensitivity reducing chemicals, e. g. Fe²⁺, Mn²⁺

Temperature 1...40 °C **Max. pressure** 1.0 bar

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage Via CAN-interface (11 – 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated

Response time sensor t₉₀ 3 m

Selectivity Chlorite selective towards chlorine dioxide, chlorate and free chlorine

Process integration Bypass: open sample water outlet Sensor fitting BAMa, DGMa, DLG III

Sensor fitting BAMa, DGMa, DLG III
Controllers DULCOMARIN

Typical applications Monitoring of chlorine dioxide treated potable water or similar water. The

selective measurement of chlorite alongside chlorine dioxide, chlorine and

chlorate is possible.

Resistance to surfactants

Measuring principle, tech- Amperometric, 2 electrodes, diaphragm-covered

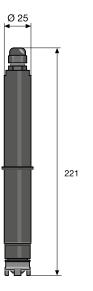
nology

	Measuring range	Order no.	
CLT 1-CAN-2 ppm	0.052.0 mg/l	1041156	

Complete with 100 ml of electrolyte, connecting cable - CAN M12 5-pin 0.5 m, T-distributor M12 5-pin CAN

1.2.9

DULCOTEST Sensors for Ozone


Ozone sensor OZE 3-mA

Standard sensor for measuring ozone in clear water. For operation on controllers with 4-20 mA input

Your Benefits

- Measured variable: Ozone, without cross sensitivity to chlorine, hydrogen peroxide
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water

Technical Data

Flow DGMa, DLG III: 20...60 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Ozone as against free chlorine, combined chlorine, hydrogen peroxide

Process integration Bypass: open sample water outlet

Sensor fitting BAMa, DGMa, DLG III

Controllers D1C

Typical applications Potable water and swimming pool water. **Resistance to** Salts, acids, alkalis. Not surfactants

Measuring principle, techAmperometric, 2 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
OZE 3-mA	0.022.0 mg/l	792957	

Note: A mounting kit (order no. 815079) is required for initial fitting of the ozone sensors in the in-line probe housing DLG III.

Ozone sensor OZR 1-mA

Sensor for measuring and monitoring the absence of ozone, also suitable for use in contaminated water. For operation on controllers with 4-20 mA input

Your Benefits

- Measured variable: Ozone, without cross sensitivity to chlorine, hydrogen peroxide
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the
- Suitable also for monitoring the absence of ozone (rupture monitoring on filters) and for discontinuous ozone treatment processes
- Resistance to films of dirt by pore-free diaphragm

Technical Data

Measured variable Ozone (O3) Reference method DPD4 pH-range 4.0...11.0

Cross sensitivity chlorine dioxide, peracetic acid, bromine, bromamine

Temperature 5...40 °C Max. pressure 1.0 bar

DGMa, DLG III: 30...60 l/h Flow

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Response time ton after 1 month with 0.00 ppm ozone

Selectivity

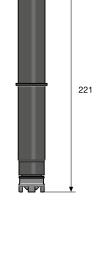
Non-selective **Process integration**

Bypass: open sample water outlet Sensor fitting BAMa, DGMa, DLG III

<210 s

Controllers D1C

Typical applications Potable water, swimming pool water, process, service or cooling water,


monitoring the ozone breakdown of filters. Salts, acids, alkalis, surfactants, dirt films Amperometric, 2 electrodes, diaphragm-covered

Resistance to

Measuring principle, technology

	Measuring range	Order no.	
OZR 1-mA-0.5 ppm	0.010.5 mg/l	1118883	
OZR 1-mA-2 ppm	0.022.0 mg/l	1051647	
OZR 1-mA-10 ppm	0.110.0 mg/l	1118925	

Note: A mounting kit (order no. 815079) is required for initial fitting of the ozone sensors in the in-line probe housing DLG III.

Ø 25

1.2.10

DULCOTEST Sensors for Dissolved Oxygen

The measured variable "Dissolved oxygen" indicates the volume of gaseous oxygen physically dissolved in the aqueous phase in mg/l (ppm).

"Dissolved oxygen" is therefore an important parameter for assessing the quality of surface water and water that has to be treated for the breeding of livestock with the addition of oxygen. Dissolved oxygen is also used for controlling processes in clarification plants and waterworks.

The following sensors are assigned to the different applications and can be offered separately as 4 - 20 mA encoders to central controls or as a decentralised solution along with D1C and DAC (measured variable: "Dissolved oxygen": X).

Dissolved oxygen sensor DO 3-mA

Widely used sensor for the measurement of oxygen dissolved in water above 0.1 ppm to oxygen saturation. For installation in standard immersion pipes or in the bypass line of the process flow. Use in aeration tanks of clarification plants, waterworks, in fish breeding or to monitor surface water. Minimal maintenance due to visual measuring principle.

Your Benefits

- Measured variable: Dissolved oxygen, minimal maintenance in contaminated water due to visual measuring principle
- Factory calibration stable for a long time. Calibration only needed following replacement of the visual sensor cap
- Rod-shaped construction for simple installation into standard immersion pipes and ProMinent bypass fittings
- No flow dependence and minimised faults due to ingredients in the water due to the visual measuring principle of quenching
- Long lifetime of fluorescence dye and simple replacement by replacement of the sensor cap

Technical Data

Measured variable Dissolved oxygen

Calibration On atmospheric oxygen or by reference measurement in the process water

Measuring accuracy ±0.1 mg/l

Response time sensor t₉₀ < 60 s at 25 °C from air to nitrogen Temperature 0...50 °C

Temperature correction integrated Pt1000, fed to the outside

Max. pressure 2.0 b

Flow Measurement even possible without flow

Supply voltage 18...30 V DC **Electrical Connection** Fixed lead, 10 m

Output signal 4... 20 mA assigned to the measuring range, temperature-corrected,

calibrated and electrically isolated

Enclosure rating IP 6

Process integrationa) Immersion by immersion pipe (PVC, d40/DN 32, provided by the cus-

tomer). The connection can be made using the immersion pipe adapter (reducing nipple, order no. 356924) and the 45° angle (order no. 356335). Both parts are included in the scope of delivery and can be ordered as an

accessory (also see accessories).

b) Installation into ProMinent bypass fittings, type DGMa with mounting kit G1" for 25 mm sensor (1113807), type DGMa with mounting kit 791818

and type DLG III with mounting kit 815079

Controllers DACb as of firmware 02.01.01.02 with complete calibration functional-

ity and all correction variables (temperature, salinity, air pressure, height above sea level). Displayed units: [ppm] and [% oxygen saturation] **DACa**, **AEGIS II**, **AEGIS X**, **D1C**: calibration only possible by the input of a reference concentration determined from the process water. Only temperature

correction variable. Displayed unit: [ppm]

Typical applications Control of oxygen input into the aeration tank (clarification plant), control of

oxygen input in water works, breeding of fish and shrimps, conditioning of the water of large aquaria in zoos, assessment of the biological condition

of surface water.

Resistance to Contaminated water and the following chemical compounds: carbon di-

oxide, hydrogen sulfide, sulfur dioxide, ethylene oxide and against gamma

sterilisation.

Interference by Oxidant (e.g. chlorine, chlorine dioxide, ozone) and many organic solvents

(e.g. chloroform, toluene, acetone)

Measuring principle, tech-

nology

optical: Measurement of the relaxation time of a pulsed fluorescence beam $% \left\{ 1,2,\ldots ,n\right\}$

	Measuring range	Order no.	
DO 3-mA-20 ppm	0.1020.0 mg/l	1094609	

1.2.11

DULCOTEST Sensors for Peracetic Acid

DULCOTEST sensors of types PAA 1 and PAA 2-3E are diaphragm-covered amperometric sensors for the selective measurement of peracetic acid. You have the option of two sensor types for applications with different requirements:

Type PAA 1 with extra thick, pore-free diaphragm for average and higher concentrations of peracetic acid for applications in the food and beverage industry.

Type PAA 2-3E for low concentrations of peracetic acid for monitoring peracetic acid limit values in clarification plant processes or for applications in the pharmaceutical industry and medical technology.

Selection Guide

Property	PAA 1-mA	PAA 2-3E-mA
Resistance to chemicals and films (dirt, limescale, surfactants)	Very good, thanks to pore-free diaphragm	Good, thanks to hydrophilic diaphragm
Max. temperature	Up to 45 °C	Up to 40 °C
Shaft / diaphragm material	PVC-C / silicone	PVC-U / PET
Measuring range 0 [ppm]	Standard type: 200, 2000 Special type: up to 20,000	Standard type: 2, 20
Response time T90	Up: 180 seconds Down: 120 seconds	Up, down: < 30 seconds
Intermittent operation without peracetic acid	Possible	Not possible
Electrical connection	Terminal	Plug

Peracetic Acid Sensor PAA 1-mA

223

Sensor for the measurement of peracetic acid without cross-sensitivity to hydrogen peroxide. For disinfecting contaminated water from washing foodstuffs and from cleaning procedures (e.g. CIP).

Your Benefits

- Measured variable: Peracetic acid, without cross-sensitivity towards the accompanying chemical, hydro-
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm

Technical Data

Measured variable Peracetic acid Reference method Titration pH-range 1.0...9.0 Temperature 1...45 °C 0.3 °C/min Admissible temperature

fluctuation

Response time sensor t₉₀ ≈ 3 min Max. pressure 3.0 bar

Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

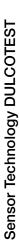
electrically isolated

Selectivity Peracetic acid selective towards hydrogen peroxide Cross sensitivity Ozone, chlorine dioxide, chlorine, bromine

Process integration Bypass: open sample water outlet BAMa, DGMa, DLG III Sensor fitting

Controllers D1C, DAC, AEGIS II, AEGIS X

Typical applications Flushing with Cleaning In Place (CIP), washing vegetables, fruit and meat,


rinsers, also suitable for use in the presence of surfactants. The selective measurement of peracetic acid in the presence of hydrogen peroxide is

Resistance to Salts, acids, alkalis, surfactants, dirt films Measuring principle, tech-Amperometric, 2 electrodes, diaphragm-covered

nology

Measuring range Order no. PAA 1-mA-200 ppm 1...200 mg/l 1022506 PAA 1-mA-2000 ppm 10...2,000 mg/l 1022507

Note: A mounting kit (order no. 815079) is required for initial fitting of the sensors in the sensor bypass fitting

Ø 25

221

1.2 Amperometric Sensors DULCOTEST

Peracetic acid sensor PAA 2-3E-mA

Sensor for measuring even low concentrations of peracetic acid without cross-sensitivity to hydrogen peroxide even in waste water (pre-cleaned)

Your Benefits

- Measured variable: peracetic acid, without cross-sensitivity to the accompanying chemical, hydrogen peroxide
- Low dependence on flow, reduced faults caused by substances in the water and films of dirt, thanks to a membrane protecting the measuring electrodes
- Sensitive measuring range from 0..02 mg/l provided by potentiometric system containing 3 electrodes
- Measured values for monitoring or fast control due to short sensor response time < 30 s
- An integrated transmitter and the signal cable's plug-in connector make for an easy installation

Technical Data

Measured variablePeracetic acidCalibrationDPD4, titrationpH-range3.0...8.0Temperature0...40 °CAdmissible temperature< 0.3 °C/min</th>

fluctuation

 $\begin{array}{ll} \textbf{Response time sensor t}_{\textbf{90}} & < 45 \text{ s} \\ \textbf{Max. pressure} & 3.0 \text{ bar} \end{array}$

Electrolytic conductivity 0.05...50 mS/cm

Flow DGMa, DLG III: 30...60 I/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4-20 mA ≈ measuring range, temperature-compensated, uncalibrated, not

electrically isolated

Selectivity Peracetic acid selective towards hydrogen peroxide

Cross sensitivity Ozone, chlorine dioxide, chlorine, bromine

Process integration Bypass: open outlet or return of the sample water into the process line

Sensor fitting BAMa, DGMa, DLG III

Controllers DAC, D1Cb, AEGIS II, AEGIS X

Typical applications Disinfecting pre-cleaned waste water, measurement and control of low

peracetic acid concentrations in the pharmaceutical industry and medical

technology.

Resistance to Salts, acids, alkalis, surfactants, dirt films

Measuring principle, tech- Amperometric, 3 electrodes, diaphragm-covered

nology

	Measuring range	Order no.	
PAA 2-3E-mA-2 ppm	0.022.0 mg/l	1120263	
PAA 2-3E-mA-20 ppm	0.220.0 mg/l	1119538	

Accessories

	Lead length	Order no.	
Measuring line (external cable), 2-core, 5-pin plug	2 m	707702	
Measuring line (external cable), 2-core, 5-pin plug	5 m	707703	
Measuring line (external cable), 2-core, 5-pin plug	10 m	707707	

1.2.12 DULCOTEST Sensors for Hydrogen Peroxide

The DULCOTEST sensors PER 1, PEROX H2.10 P and PEROX H-3E are membrane-covered, amperometric sensors for the online concentration measurement of hydrogen peroxide. Due to its complete biodegradability, hydrogen peroxide is a disinfectant and oxidising agent frequently used in water treatment and production:

- Chemical bleach in the wood, paper, textile and mineral compounds industries
- Organic synthesis in the chemical, pharmaceutical and cosmetics industries
- Oxidation of drinking water, landfill seepage water, contaminated ground water
- Disinfection of cooling, process and production water in the food and beverage industries as well as in swimming pools
- Exhaust air scrubbing in municipal clarification plants and industrial flue gas cleaning
- Elimination of chlorine in water treatment

Sensors are selected using the following decision-making table:

Requirement	Туре		
	PER1	PEROX H2.10 P	PEROX H-3E
Sample matrix loaded with dirt and chemicals	Very suitable due to water-imper- meable hydrophobic diaphragm/ separate electrolyte, however sensitive to the presence of hy- drogen sulphide (H ₂ S), oxidant	Not cross-sensitive to free chlo- rine or peracetic acid. Prone to failure due to thick water-perme- able diaphragm. Process water serves as electrolyte.	Suitable due to less water-per- meable hydrophilic diaphragm/ separate electrolyte. No cross-sensitivity to free chlorine
Electrical influence due to interference potential in the measurement medium	Insensitive because the counter electrode is separated from the process	More sensitive because the counter electrode is in the medium	Insensitive because the counter electrode is separated from the process to a great extent
Temperature range	Up to 50 °C	Up to 40 °C	Up to 45 °C
Simple handling during instal- lation and maintenance	Suitable due to temperature compensation and transmitters integrated in the sensor	Separate temperature sensor for fast processes. Separate clip-on transducer	Transmitter integrated in the sensor. Signal cable can be plugged onto sensor. Separate temperature measurement for processes with rapid change in temperature
Response time as t ₉₀	480 s	20 s	45 s
Quick temperature changes	Slow due to integrated temperature sensor	Fast due to separate temperature sensor	Slow due to integrated temperature sensor
Measuring intervals in the absence of H ₂ O ₂ (> 1 week)	Unsuitable	Suitable due to pulsed polarisation technology	Suitable due to pulsed polarisation technology
Measuring range may vary at times due to orders of magnitude or is not clear in the order	A suitable sensor must be selected	Suitable because the measuring range can be manually switched on the sensor transducer	A suitable sensor must be selected
Measuring range (special measuring ranges > 2000 mg/l on request)	20100,000 mg/l	12000 mg/l	0.2500mg/l
pH range	1.011.0	2.510.0	2.58.0
Measuring electrodes	2 electrodes	2 electrodes	3 electrodes
Typical application	Cooling water, waste water, bleaching process	Exhaust air scrubbers, drinking water, swimming pools, pharmaceutical industry	Swimming pool, plant irrigation water, chlorine elimination

Hydrogen peroxide sensor PER 1-mA

223

Sensor for the measurement of hydrogen peroxide even in chemically contaminated and polluted water. Available with measuring ranges for medium to very high concentrations

Your Benefits

- Hydrogen peroxide as the measured variable, with measuring ranges from 20 ppm to 100,000 ppm (10%. With > 2%, as special versions) available
- Diaphragm-covered sensor minimises faults caused by changing flow or substances in the water
- Resistance to films of dirt thanks to use of a pore-free diaphragm
- Can be used in wide pH range of 1...11
- Operating temperature up to 50 °C

Technical Data

Measured variable Hydrogen peroxide

Calibration Photometric with manual DT3B photometer

1.0...11.0 pH-range Temperature 0...50 °C < 0.3 °K/min Admissible temperature

fluctuation

Response time sensor t₉₀ approx. 480 sec

Max. pressure 1.0 bar

DGMa, DLG III: 30...80 I/h Flow

BAMa: 5...60 l/h (depending on design)

Supply voltage 16...24 V DC (2-wire)

Output signal 4...20 mA temperature-compensated, uncalibrated, not electrically isolated

Selectivity Hydrogen peroxide selective towards sulphite

Cross sensitivity Ozone, chlorine dioxide, peracetic acid, chlorine, bromine

Process integration Bypass: open outlet or return of the sample water into the process line

Sensor fitting BAMa, DGMa, DLG III Controllers D1C

Typical applications Cooling and waste water treatment, bleaching processes, H2O2 product

qualification, water with higher H₂O₂ concentrations of up to 100,000 ppm. Resistance to

Salts, acids, alkalis, surfactants, dirt films, not against hydrogen sulphide

(H₂S) Amperometric, 2 electrodes, diaphragm-covered

Measuring principle, tech-

nology

Measuring range	Order no.	
20.02,000.0 mg/l	1022510	

Important note: Measuring ranges up to 100,000 ppm on request

Photometer → 233

PER 1-mA-2000 ppm

Accessories

		Order no.	
Photometer DT3B hydrogen peroxide	(for calibration)	1039317	
Polishing paste	(to electrode cleaning)	559810	

Note: A mounting kit (order no. 815079) is required for initial fitting of the sensors in the sensor bypass fitting

Hydrogen peroxide sensor PEROX H2.10 P-mA

Sensor for measuring hydrogen peroxide without cross-sensitivity to chlorine. It can also be used for fast control processes even with the temporary absence of hydrogen peroxide in clear water in a wide pH range of 2.5...10.

Your Benefits

- Measured variable hydrogen peroxide without cross-sensitivity to chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow
- Fast processes can be controlled through the sensor's rapid response time in conjunction with fast external temperature measurement for temperature correction
- Can be used in wide pH range of 2.5...10
- Reliable measurement even after periods of absence of hydrogen peroxide thanks to pulsed, self-regenerating measuring electrode

Technical Data

Measured variable Hydrogen peroxide

Calibration Photometric with manual DT3B photometer 1...20, 10...200, 100...2000 mg/l, switchable Measuring range

pH-range 2.5...10.0 0...40 °C Temperature

Admissible temperature < 1 °K/min (with external T measurement)

fluctuation

Response time sensor too approx. 20 sec

For measuring range 20 mg/l: $5 \mu S/cm$ Min. conductivity For measuring range 200 mg/l: 200 µS/cm

Up to 1,000 mg/l: 500 μS/cm

Up to 2,000 mg/l: 1 mS/cm

Max. pressure 2.0 bar

DGMa, DLG III: 30...60 l/h Flow

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 V DC (three-wire system) 4...20 mA not temperature-compensated, uncalibrated, not electrically Output signal

Selectivity Hydrogen peroxide selective towards free chlorine

Process integration Bypass: open outlet or return of the sample water into the process line Sensor fitting

BAMa, DGMa, DLG III

Controllers DAC, D1C (without temperature correction)

Typical applications Exhaust air scrubbers, treatment of clear and chemically uncontaminated

water, controls with the necessary very short response times

Resistance to Salts, acids, lyes, surfactants.

Measuring principle, techamperometric, 2 pulsing electrodes, diaphragm-covered

nology

	Order no.
H ₂ O ₂ sensor PEROX-H2.10 P	792976
PEROX transducer V1 for D1Ca	1034100
PEROX Transducer V2	1047979

Accessories

		Order no.	
Photometer DT3B hydrogen peroxide	(for calibration)	1039317	
Polishing paste	(to electrode cleaning)	559810	

Photometer → 233

Hydrogen peroxide sensor PEROX H 3E-mA

Sensor for the measurement of hydrogen peroxide without cross-sensitivity to free chlorine peracetic acid. Suitable for use with fast control processes, even in moderately contaminated water, and for reliable measurement from 0.2 ppm H₂O₂

Your Benefits

- Measured variable hydrogen peroxide without cross-sensitivity to free chlorine and peracetic acid
- Sensitive measuring range from 0.2 mg/l
- Fast processes can be controlled through the sensor's rapid response time in conjunction with fast external temperature measurement for temperature correction
- Reliable measurement even after periods of absence of hydrogen peroxide thanks to pulsed, self-regenerating measuring electrode
- Low measuring range provided by a system containing 3 electrodes
- Membrane-covered sensor minimises faults caused by changing flow
- An integrated transmitter and the signal cable's plug-in connector make for an easy installation

Technical Data

Measured variable Hydrogen peroxide

Calibration Photometric with manual DT3B photometer

pH-range 2.5...8.0 Temperature 0...45 °C

Admissible temperature < 1 °K/min (with external T measurement)

fluctuation

Response time sensor t₉₀ < 45 sElectrolytic conductivity

0.05...50 mS/cm Flow DGMa, DLG III: 30...60 l/h

BAMa: 5...100 l/h (depending on design)

Supply voltage 16...24 (two-wire technology) V DC

Output signal 4...20 mA not temperature-compensated, uncalibrated, not electrically

isolated

Electrical Connection via a 4-pin plug on the sensor via an open-ended signal cable on the unit Selectivity Hydrogen peroxide selective to free chlorine, peracetic acid, sulphite **Process integration** Bypass: open outlet or return of the sample water into the process line

Sensor fitting BAMa, DGMa, DLG III

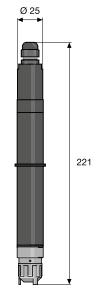
Controllers DAC, D1Cb (without temperature correction)

Typical applications Swimming pool, plant irrigation water, chlorine elimination. Can also be

used for moderately contaminated water, controls with the necessary short

response times and low H₂O₂ concentrations

Resistance to Salts, acids, alkalis, surfactants, dirt films amperometric, 3 pulsing electrodes, diaphragm-covered Measuring principle, tech-


nology

	Measuring range	Order no.	
PEROX H-3E-10ppm	0.2010.0 mg/l	1058563	
PEROX H-3E-50ppm	1.050.0 mg/l	1105779	
PEROX H-3E-200ppm	5.0200 mg/l	1105778	
PEROX H-3E-500ppm	10500 mg/l	1117570	

Accessories

	Order no.	
Pt 100 SE - temperature sensor for direct temperature measurement or	305063	
temperature compensation during measurement of pH, fluoride, con-		
ductivity, chlorine dioxide or hydrogen peroxide		
DT3B photometer for calibrating the sensors for hydrogen peroxide,	1039317	
complete with transport case		
Lead length	Order no.	
v		

	Lead length	Order no.	
Measuring line (external cable), 2-core, 5-pin plug	2 m	707702	
Measuring line (external cable), 2-core, 5-pin plug	5 m	707703	
Measuring line (external cable), 2-core, 5-pin plug	10 m	707707	

1.3.1 Selection Guide for pH Sensors, ORP Sensors

The following generally applicable points should be observed for optimum functioning of pH and ORP sensors:

- The sensors should never dry out
- The insertion angle must be > 15 ° from the horizontal (except with PHEK-L type)
- Maximum flow < 0.8 m/s</p>
- Use of suitable measuring lines
- Measuring lines should be as short as possible
 - Use of suitable measuring devices/transducers (high resistance input)
- Calibration using quality buffer solutions
- Selection of electrode type depending on the application
- The storage period should be as short as possible

Measuring lines for pH/ORP measurement, see page \rightarrow 133, quality buffer solutions for pH, see page \rightarrow 136

Selection guide for pH sensors DULCOTEST

Sensor type	Typical applications	Remarks	pH range	Max. temper- ature and max. pressure	Loading with parti- cles/solid matter in the appli- cation	Reference	Dia- phragm
PHES	Drinking water, swimming pool water		1 to 12	60°C / 3 bar	None to low levels	Ag/AgCl	1x ceramic
PHEK	Swimming pool water, aquariums	Plastic sensor shaft for greater safety during handling, e.g. end customers in the private swimming pool sector	1 to 12	60°C / 3 bar	None to low levels	Ag/AgCl	1x ceramic
PHEP/ PHEPT	Drinking water, swimming pool water, process water	PHEPT with integrated temperature sensor	1 to 12	80°C / 6 bar	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
PHED	Process water, electro- plating	Chemically contaminated water, e.g. Cr^{e_+} , CN^-	1 to 12			Ag/AgCl with AgCl reservoir	2x ceramic; double junction
PHEN	Chemically contaminated water, low-conductivity water ≥ 50 µS/cm	Reference electrolyte is intro- duced into the sensor using external bottles and can be topped up	1 to 12	80°C / no overpres- sure	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
PHER	Industrial and public waste water, cooling towers	Dirt-repellent PTFE diaphragm	1 to 12	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	1x PTFE
PHER-DJ	Reverse osmosis (conductivity ≥ 10 µS/ cm), acid and alkaline gas scrubbers (without fluoride, HF), general applications with chemical pollution that may attack the reference system	Dirt-repellent PTFE diaphragm and a double junction to protect the reference system	1 to 12	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	2xPTFE; double junction
PHEI	Industrial and public waste water, cooling towers	Long service life thanks to large volume of reference electrolyte, double junction and large PTFE diaphragm, 3/4" NPT screw-in thread	1 to 12	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	1x PTFE; 1x ceramic; double junction
PHEX	Suspensions, sludge, emulsions	Open ring diaphragm	1 to 12	25°C / 16 bar and 100°C / 6 bar	Medium to high levels	Ag/AgCl with AgCl reservoir	Open ring diaphragm
PHEF	Media containing fluoride with low pH values, e.g. etching solutions contain- ing fluoride in electro- plating	Special pH glass with increased resistance to HF	0 to 12	50°C / 7 bar	Low to medium levels	Ag/AgCl	1x HDPE
PHEF-DJ	Media containing fluoride with low pH values, e.g. gas scrubbers where gases containing fluoride are scrubbed	Special pH glass with increased resistance to HF	1 to 12	60°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	2xPTFE; double junction
PHEP-H	Process water with high pH values (> pH 12)	Special pH glass with increased resistance to high pH values	3 to 14	80°C / 6 bar	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic

Note: All DULCOTEST pH and ORP sensors are made using lead-free glass (RoHS-compliant)

Select	ion guide for ORP	sensors DULCO	IEST		
cations	Domarke	Material	May	Loading	Dofor

Sensor type	Typical applications	Remarks	Material of sensor pin	Max. temper- ature and max. pressure	Loading with parti- cles/solid matter in the appli- cation	Reference	Dia- phragm
RHES Pt	Drinking water, swimming pool water		Platinum (Pt)	60°C/3 bar	None to low levels	Ag/AgCl	1x ceramic
RHES Au	Swimming pool water	ORP sensors with gold electrodes are not susceptible to hydrogen, which is produced through the generation of chlorine by open electrolysis systems. What's more, gold electrodes are well suited to ozone applications.	Gold (Au)	60°C / 3 bar			
RHEK Pt	Swimming pool water, aquariums	Plastic sensor shaft for greater safety during handling; e.g. end customers in the private swimming pool sector	Platinum (Pt)	60°C / 3 bar	None to low levels	Ag/AgCI	1x ceramic
RHEKL Pt	Swimming pool water, aquariums	Horizontal installation is possible thanks to two diaphragms	Platinum (Pt)	60°C/3 bar	None to low levels	Ag/AgCl	2x ceramic
RHEP Pt	Drinking water, swimming pool water, process water		Platinum (Pt)	80°C / 6 bar	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
RHEP Au	Drinking water, swimming pool water, process water	ORP sensors with gold electrodes are not susceptible to hydrogen, which is produced through the generation of chlorine by open electrolysis systems What's more, gold electrodes are well suited to ozone applications	Gold (Au)	80°C / 6 bar	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
RHEN Pt	Chemically contaminated water Low-conductivity water ≥ 50 µS/cm	Reference electrolyte is intro- duced into the sensor using external bottles and can be topped up	Platinum (Pt)	80°C / no overpres- sure	None to low levels	Ag/AgCl with AgCl reservoir	1x ceramic
RHER Pt	Industrial and public waste water, cooling towers	Dirt-repellent PTFE diaphragm	Platinum (Pt)	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	1x PTFE
RHER-DJ	Reverse osmosis (conductivity ≥ 10 µS/cm) General applications with chemical pollution that may attack the reference system	Dirt-repellent PTFE diaphragm and a double junction to protect the reference system	Platinum (Pt)	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	2xPTFE; double junction
RHEIC	Industrial and public waste water, cooling towers	Long service life thanks to large volume of reference electrolyte, double junction and large PTFE diaphragm 3/4" NPT screw-in thread	Platinum (Pt)	80°C / 6 bar	Low to medium levels	Ag/AgCl with AgCl reservoir	1x PTFE; 1x ceramic; double junction
RHEX	Suspensions, sludge, emulsions	Open ring diaphragm	Platinum (Pt)	25°C / 16 bar and 100°C / 6 bar	Medium to high levels	Ag/AgCI with AgCI reservoir	Open ring diaphragm

 $\textbf{Note:} \ \textbf{All DULCOTEST pH and ORP sensors are made using lead-free glass (RoHS-compliant)}$

Sensor Technology DULCOTEST

1.3 Sensors DULCOTEST for pH, ORP, Fluoride and **Temperature**

1.3.2 pH Sensors with SN6 or VARIO Pin Plug-In Head

pH sensors with plug-in head are connected to a shielded coaxial cable with the appropriate socket. The rotatable threaded sleeve on the sensor head prevents the cable from twisting when inserting and removing the sensor (e.g. when calibrating). The cable can therefore remain connected. This avoids the penetration of troublesome water onto the plug-in contacts.

pH Sensor PHES 112 SE

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

pH-range 1...12 0...60 °C Temperature Max. pressure 3.0 bar Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25° Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

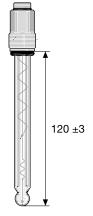
Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers All DULCOMETER controllers

Typical applications Swimming pools, whirlpools, potable water


Resistance to Disinfectant

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic

nology diaphragm, separate temperature measurement for temperature compen-

sation needed

	Installation length	Order no.	
PHES-112-SE SLg100	100 ±3 mm	1051745	
PHES 112 SE	120 ±3 mm	150702	
PHES-112-SE SLg225	225 ±3 mm	150092	

pH Sensor PHES 112 SE 3D

120 ±3

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs and at low electrolytic conductivities of up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Three ceramic diaphragms optimised for low electrolytic conductivities
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

pH-range 1...12 Temperature 0...60 °C Max. pressure 3.0 bar Min. conductivity 50 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm 3 ceramic diaphragms

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers Typical applications Low conductivity water.

Resistance to Disinfectant

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic nology

diaphragm, separate temperature measurement for temperature compen-

	Installation length	Order no.	
PHES 112 SE 3D	120 ±3 mm	1045759	

pH Sensor PHEP 112 SE

pH sensor optimised for use with clear process water and conditions of up to 80 °C/6 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system for high pressure/temperature requirements
- Twist protection for the sensor cable connected. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH-range 1...12 0...80 °C Temperature Max. pressure 6.0 bar Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Sensor shaft Glass Shaft diameter 15 mm Installation length 120 ±3 mm Fitting position Vertical up to +25° Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Swimming pools during pressurisation for higher temperatures and pres-

sures, potable and industrial water, electroplating, chemical industries.

Resistance to Disinfectant

Measuring principle, tech-

nology

Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic diaphragm, separate temperature measurement for temperature compen-

sation needed

	Installation length	Order no.	
PHEP 112 SE	120 ±3 mm	150041	
PHEP 112 SE SLa100	100 ±3 mm	150951	

pH Sensor PHEP-H 314 SE

120 ±3

pH sensor optimised for use with clear process water, specifically for alkaline process solutions at high temperatures of up to 100 °C

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Optimised pH-sensitive glass for high alkali content and high temperatures
- Long service life / excellent precision: Measurement at a high pH value of up to 14
- Long service life: at high temperatures of up to 100 °C
- Stable reference system for high pressure / temperature requirements
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft Glass Shaft diameter 15 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Monitoring or control of chemical processes with neutral to highly-alkaline

media and temperatures up to 100 °C.

Resistance to Disinfectant, high alkalinity

Measuring principle, tech-

nology

Direct potentiometric measurement, 2 electrodes, highly alkaline tempered glass, ceramic diaphragm, gel electrolyte, separate temperature measure-

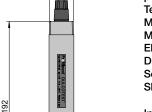
ment for temperature compensation needed

Order no. PHEP-H 314 SE 1024882

Sensor Technology DULCOTEST

1.3 Sensors DULCOTEST for pH, ORP, Fluoride and **Temperature**

pH Sensor PHEI 112 SE



Reliable online measurement of pH values in industrial waste water/water - with DULCOTEST sensors

Your Benefits

- Solid high-grade plastic housing with integrated process connection for direct installation in the process with 1/2" and 3/4" NPT thread
- Large dirt-repellent Teflon diaphragm protects against unwanted blocking of the reference
- Double junction reference system for stability with chemically polluted water
- Large electrolyte reservoir for long service lives

Technical Data

NPT 3/4"

NPT 3/4"

NPT 1/2"

pH-range 1...12 Temperature 0...80 °C Max. pressure 6.0 bar Min. conductivity 50 µS/cm

Electrolyte Gel containing potassium chloride with a large KCI reservoir of gel

Diaphragm PTFE ring diaphragm

Sensor shaft Plastic

Shaft diameter 17 \pm 0.2 mm (below the $\frac{1}{2}$ " NPT thread), 22 \pm 0.2 mm (below the $\frac{3}{4}$ "

thread)

Installation length 20 ± 0.2 mm (from the lower end of the ½" thread), 60 ± 0.2 mm (from the

lower end of the 34" thread)

Fitting position Vertical up to +25° Thread 1/2" and 3/4" NPT thread

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Municipal and industrial waste water Cooling water, process water, water

in the chemical industry and paper making, generally for water with a solid

Resistance to

Measuring principle, tech-

nology

Disinfectant, solids content (turbid water), water-soluble chemicals direct potentiometric measurement, 2 probes, double junction, gel electrolyte, large Teflon diaphragm, separate temperature measurement for

temperature compensation needed

	Order no.
PHEI 112 SE	1076610

Accessories

	Order no.	
Adapter for fitting BAMa, DGMa, DLG III; M34 x 3/4" NPT PVDF-natural	1077156	

pH Sensor PHER 112 SE

120 ±3

pH sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 µS/ cm at up to 80 °C/6 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Gel containing potassium chloride with KCl reservoir Electrolyte

Diaphragm PTFE ring diaphragm

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers All DULCOMETER controllers

Typical applications Municipal and industrial waste water, cooling water, process water, water

in the chemical industry and paper making, generally water with solid

Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle, tech-

nology

Direct potentiometric measurement, 2 electrodes, Teflon ring diaphragm, polymer electrolyte, separate temperature measurement for temperature

01.01.2023

compensation needed

Order no. PHER 112 SE 1001586

PH sensor PHER-DJ 112 SE

pH sensor with double diaphragm (double junction) optimised for use in contaminated water containing solids and for low conductivity of > 10 µS/cm at up to 80 °C/6 bar.

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

pH-range 1...12 0...80 °C Temperature 6.0 bar Max. pressure Min. conductivity 10 µS/cm

Gel containing potassium chloride with KCl reservoir Electrolyte

Diaphragm 2x PTFE ring diaphragm

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25° Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers All DULCOMETER controllers

Typical applications Municipal and industrial waste water, cooling water, process water, water

in the chemical industry and paper making, generally water with solid

Disinfectant, solids content (turbid types of water) Resistance to

Measuring principle, tech-

nology

Direct potentiometric measurement, 2 electrodes, Teflon ring diaphragm, polymer electrolyte, separate temperature measurement for temperature

compensation needed

Installation length Order no. PHER-DJ 112 SE 1108991 120 ±3 mm

pH Sensor PHEX 112 SE

120 + 3

pH sensor optimised for use with contaminated water with a high solids content at 6 bar/100 °C or 16

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Electrolyte Polymer containing potassium chloride (solid) Diaphragm Circular gap diaphragm (solid electrolyte)

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Waste water, industrial water, process chemistry, emulsions, suspensions,

> protein-containing media, in general for water with a high solid fraction, not suitable for use in clear water. not suitable for media with oxidation agents.

Solids content (turbid types of water), sludge, emulsions

Measuring principle, tech-

Resistance to

nology

Direct potentiometric measurement, 2 electrodes, no diaphragm, polymer electrolyte, separate temperature measurement for temperature compen-

sation needed

	Installation length	Order no.	
PHEX 112 SE	120 ±3 mm	305096	
PHEX 112 SE SLg225	225 ±3 mm	150061	

From stock Heidelberg

pH Sensor PHED 112 SE

pH sensor optimised for use with chemically contaminated but clear water at up to 80 °C/8 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in chemically contaminated but clear water
- Double junction: two coupled ceramic diaphragms protect the reference system
- Long service life when chemical pollutants are present
- Special construction permits a maximum pressure of 8 bar
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

pH-range 1...12 Temperature 0...80 °C Max. pressure 8.0 bar Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Double junction

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Vertical up to +25° Fitting position

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Chemically loaded waste water, industrial water, cooling water.

Disinfectants, water-soluble chemicals Resistance to

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, double junction, gel nology electrolyte, separate temperature measurement for temperature compen-

sation needed

	Order no.
PHED 112 SE	741036

pH Sensor PHEF 012 SE

120 ±3

pH sensor optimised for use with acidic water containing fluoride and abrasive water containing solids at up to $50 \, ^{\circ}\text{C/7}$ bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Optimised pH glass for use in the presence of glass-corroding hydrofluoric acid (HF). HF is formed primarily in the presence of fluoride (F') at a pH of < 4. Glass corrosion is promoted by a constant concentration of fluoride, a falling pH value and a rising temperature. The glass composition and structure of the PHEF type reduce the release of SiF,. Extended service life in the presence of fluoride (F') at a pH of < 7</p>
- The flat shape of the glass diaphragm and large ring diaphragm facilitate use in contaminated water, which also contains abrasive solids

Technical Data

 pH-range
 0...12

 Temperature
 0...50 °C

 Max. pressure
 7.0 bar

 Min. conductivity
 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm HDPE ring diaphragm, flat (Double Junction)

Sensor shaft Epoxy
Shaft diameter 12 mm
Installation length 120 ±3 mm
Fitting position Vertical up to +25°
Thread PG 13.5

Electrical Connection SN6 plug-in head

Enclosure rating IP 65

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications A significantly longer service life can be achieved compared with standard

pH sensors in media containing hydrofluoric acid, e.g. waste water from the semiconductor industry or electroplating applications and air scrub-

bers.

Resistance to Disinfectant, solids content (turbid types of water), hydrofluoric acid (HF),

abrasive particles

Measuring principle, tech-

nology

Direct potentiometric measurement, 2 electrodes, PE ring diaphragm, HF-compatible flat glass diaphragm, gel electrolyte, separate temperature

measurement for temperature compensation needed

 Order no.

 PHEF 012 SE
 1010511

pH sensor PHEF-DJ 112 SE

pH sensor with double diaphragm (double junction) optimised for acid water containing fluoride at up to

Your Benefits

- Electrochemical combination probe: pH and reference electrode integrated
- Precise and reliable pH measurement in water containing fluoride with low pH enables efficient processes and excellent process reliability
- A special pH glass and dirt-repellent double junction can extend the service life of the sensor and thereby minimise downtimes as well as maintenance requirements
- The combination of hydrofluoric acid-resistant glass and PTFE double junction makes the sensor suited to gas scrubbing applications where fluoride and dirt may be encountered at the same time
- Twist protection for the sensor cable connected ensures that the cable can remain connected during installation and removal of the sensor, reducing moisture on the plug-in contacts

pH-range 1...12 0...60 °C Temperature Max. pressure 6.0 bar Min. conductivity 10 µS/cm

Electrolyte Gel containing potassium chloride Diaphragm 2 x PTFE ring diaphragm, double junction

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

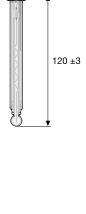
Controllers all DULCOMETER controllers

Typical applications A significantly longer service life can be achieved compared with standard

pH sensors in media containing hydrofluoric acid, e.g. waste water from the semiconductor industry or electroplating applications and air scrub-

bers. Low conductivity water.

Resistance to Disinfectant, dirt


Measuring principle, tech-

nology

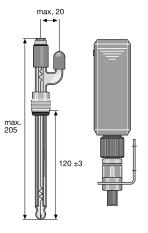
Direct potentiometric measurement, 2 electrodes, gel electrolyte, PTFE diaphragm, separate temperature measurement needed for temperature

compensation

Order no. PHEF-DJ 112 SE 1114185

Sensor Technology DULCOTEST

Sensors DULCOTEST for pH, ORP, Fluoride and 1.3 **Temperature**


pH Sensor PHEN 112 SE

Refillable pH sensor optimised for use with chemically contaminated water at up to 80 °C/without excess

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the
- 1 ceramic diaphragm made of special material and with an optimised size / with optimised pore diameter
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Long service life in the presence of chemicals dissolved in the water, which could contaminate the reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

pH-range 1...12 0...80 °C Temperature

Max. pressure Operation at atmospheric pressure

Min. conductivity 150 µS/cm

Electrolyte KCL electrolyte, refillable

Diaphragm Ceramic Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Waste water, cooling waterchemically contaminated water.

Resistance to Disinfectant, only for clear types of water

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, liquid electrolyte, 1 nology ceramic diaphragm, separate temperature measurement for temperature

compensation needed

	Order no.
PHEN 112 SE	305090

Delivered without PE storage tank and hose

Accessories

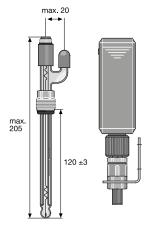
	Order no.
PE storage tank with connectors and tube	305058

For the PE storage tank, we recommend fitting approx. 0.5 - 1 m above the level of the measurement medi-

	Capacity	Order no.	
KCl solution, 3 molar	250 ml	791440	
KCl solution, 3 molar	1,000 ml	791441	

Sensor Technology DULCOTEST

1.3 Sensors DULCOTEST for pH, ORP, Fluoride and Temperature


pH Sensor PHEN 112 SE 3D

Refillable pH sensor optimised for use in contaminated water containing solids and water with a low conductivity of $> 50 \mu$ S/cm at up to 80 °C/without overpressure

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte through continuous replenishment from an electrolyte bottle installed above the electrode
- 3 ceramic diaphragms made of special material, with optimised size and optimised pore diameter
- Twist protection for the sensor cable connected. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Long service life in water with low conductivity of > 50 μS/cm and where solids are present
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

pH-range 1...12 **Temperature** 0...80 °C

Max. pressure Operation at atmospheric pressure

Min. conductivity 50 µS/cm

Electrolyte KCL electrolyte, refillable Diaphragm 3 ceramic diaphragms

Sensor shaftGlassShaft diameter12 mmInstallation length120 ±3 mmFitting positionVertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Process integration

Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers All DULCOMETER controllers

Typical applications Waste water, water with low conductivity, e.g. from reverse osmosis.

Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle, technology Direct potentiometric measurement, 2 electrodes, liquid electrolyte, 1 ceramic diaphragm, separate temperature measurement for temperature

compensation needed

 PHEN 112 SE 3D
 Order no.

 150078

pH Sensor PHEK 112 S

125 ±3

pH sensor for use with manual measuring instruments, with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 80 °C/3 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft Polycarbonate Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread none

SN6 plug-in head **Electrical Connection**

Enclosure rating IP 65

Process integration Immersion by tripod or manually Controllers all DULCOMETER controllers

Typical applications Hand-held measurement in swimming pools, potable water.

Resistance to Disinfectant

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic nology

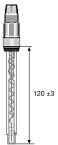
diaphragm, separate temperature measurement for temperature compen-

sation needed

Order no. PHEK 112 S 305051

Sensor Technology DULCOTEST

1.3 Sensors DULCOTEST for pH, ORP, Fluoride and **Temperature**


pH Sensor PHEK 112 SE

pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

pH-range 1...12 0...60 °C Temperature Max. pressure 3.0 bar Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft Polycarbonate Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Swimming pool, potable water, aquariums

Resistance to Disinfectant

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic nology

diaphragm, separate temperature measurement for temperature compen-

sation needed

Order no. PHEK 112 SE 1028457

From stock Heidelberg

pH Sensor PHEK-L 112 SE

pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs, horizontal installation possible, at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- With plastic shaft to prevent glass breakage
- Horizontal (level) installation possible (90° angle) (usually limited to 0 75° angle)
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material and optimised size / optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Twist protection for the sensor cable connected. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system

Technical Data

pH-range 1...12 Temperature 0...60 °C Max. pressure 3.0 bar Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Sensor shaft Polycarbonate Shaft diameter 12 mm $120 \pm 3 \text{ mm}$ Installation length Fitting position Vertical to horizontal

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Swimming pools, potable water, aquaria. Horizontal installation possible.

Resistance to Disinfectant

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic nology

diaphragm, separate temperature measurement for temperature compen-

sation needed

Order no. PHEK-L 112 SE 1034918

pH Sensor PHEPT 112 VE

pH sensor with integral temperature measurement, optimised for use with clear process water and changing process temperature of up to 80 °C/6 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Integrated Pt 100 temperature sensor for temperature compensation of the pH measurement in higher-order measuring instruments eliminates the need for an additional sensor housing and external temperature
- VARIO Pin plug-in head with IP 67 specification
- Twist protection for the sensor cable connected. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

120 ±3

1...12 Temperature 0...80 °C 6.0 bar Max. pressure Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft Glass Shaft diameter 15 mm Installation length 120 ±3 mm Fitting position Vertical up to +25° Thread PG 13.5

Electrical Connection VARIO Pin plug-in head

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

All DULCOMETER controllers (with the exception of DCCa pH) Controllers Typical applications Swimming pools during pressurisation for higher temperatures and

pressures, potable and industrial water, electroplating, chemical industry,

processes with a temperature change.

Resistance to Disinfectant

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic nology

diaphragm, integrated temperature measurement for temperature compen-

Order no. PHEPT 112 VE 1004571

Accessories: Measuring Line for Sensors with VARIO Pin Plug-in Head

Ready-made 6-wire measuring line with VARIO Pin plug for connection to sensor type PHEPT 112 VE.

	Length	Order no.	
VARIO Pin signal lead VP 6-ST/ 2 m	2 m	1004694	
VARIO Pin signal lead VP 6-ST/ 2 m	5 m	1004695	
VARIO Pin signal lead VP 6-ST/ 2 m	10 m	1004696	

1.3.3 pH Sensors with Fixed Cable

pH sensors with fixed cable contain a shielded coaxial cable, which is firmly connected to the sensor head. A rotatable threaded sleeve on the sensor head prevents the cable from twisting when inserting and removing the sensor.

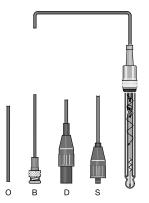
The technical data corresponds to pH sensors with SN6 plug-in head (see page \rightarrow 80)

pH Sensor PHES 112 F

pH sensor for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to $60 \, ^{\circ}$ C/3 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)


	Cable thickness	Lead length	Device plug	Order no.	
	mm	m			
PHES 112 F 301 S	3	1	SN6	304976	
PHES 112 F 301 B	3	1	BNC	304980	
PHES 112 F 303 B	3	3	BNC	304981	

Further types on request.

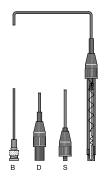
pH Sensor PHES 112 FE

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for drinking water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotatable threaded sleeve on the sensor head prevents the cable from twisting when inserting and removing the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable thickness	Lead length	Device plug	Order no.	
	mm	m			
PHES 112 FE 303 S	3	3	SN6	304984	
PHES 112 FE 310 S	3	10	SN6	304985	
PHES 112 FE 503 D	5	3	DIN	304986	
PHES 112 FE 303 B	3	3	BNC	304988	
PHES 112 FE 310 O	3	10	none	304990	
PHES 112 FE 301 B	3	1	BNC	150079	
PHES 112 FE 301 S	3	1	SN6	150926	
PHES 112 FE 303 O	3	3	none	150101	


Sensor Technology DULCOTEST

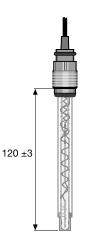
1.3 Sensors DULCOTEST for pH, ORP, Fluoride and Temperature

pH Sensor PHEK 112 F

pH sensor for use with manual measuring instruments, with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 80 °C/3 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)


	Cable thick- ness	Lead length	Device plug	Order no.	
	mm	m			
PHEK 112 F 501 D	5	1	DIN	304995	
PHEK 112 F 301 B	3	1	BNC	304996	

Further types on request.

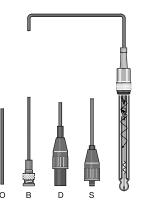
pH Sensor PHEK 112 FE

pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for drinking water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotatable threaded sleeve on the sensor head prevents the cable from twisting when inserting and removing the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH sensor with polycarbonate plastic shaft, glass diaphragm protection, with fixed coaxial cable and device plug, without screw-in thread.

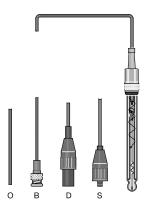

	Cable thickness	Lead length	Device plug	Order no.	
	mm	m			
PHEK 112 FE 303 B	3	3	BNC	1028458	
PHEK 112 FE 301 B	3	1	BNC	150091	

pH Sensor PHEP 112 FE

pH sensor optimised for use with clear process water and conditions of up to 80 °C/6 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system for high pressure/temperature requirements
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

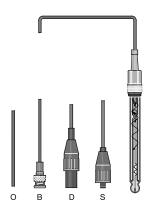

	Cable thickness	Lead length	Device plug	Order no.	
	mm	m			
PHEP 112 FE 303 S	3	3	SN 6	150673	
PHEP 112 FE 305 O	3	5	none	150689	
PHEP 112 FE 510 O	5	10	none	150929	
PHEP 112 FE 301 B	3	1	BNC	150557	
PHEP 112 FE 303 B	3	3	BNC	150676	

Further types on request.

pH Sensor PHER 112 FE

pH sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 μ S/cm at up to 80 °C/6 bar

Your Benefits


- Electrochemical combination electrode: pH and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

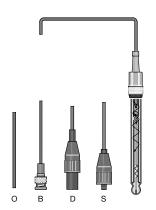
	Cable Lead thickness	l length Device plug	Order no.	
	mm	m		
PHER 112 FE 510 O	5	10 none	150874	
PHER 112 FE 301 B	3	1 BNC	150690	
PHER 112 FE 302 O	3	2 none	150163	
PHER 112 FE 505 O	5	5 none	150873	
PHER 112 FE 510 S IP68	5	10 SN6	1112930	
PHER 112 FE 510 O IP68	5	10 none	1112996	
PHER-DJ 112 FE 510 S IP68	5	10 SN6 (S8)	1113190	
PHER-DJ 112 FE 510 O IP68	5	10 none	1113189	

pH sensor PHEF-DJ 112 FE

pH sensor optimised for acid water containing fluoride at up to 60 °C/8 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Precise and reliable pH measurement in water containing fluoride with low pH values
- Large dirt-repellent Teflon® diaphragms prevent the reference system from becoming blocked up
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)


	Cable Lead thickness	d length Device plug	Order no.	
	mm	m		
PHEF-DJ 112 FE 505 O IP68	5	5 none	1121510	
PHEF-DJ 112 FE 505 S IP68	5	5 SN 6	1121511	
PHEF-DJ 112 FE 510 O IP68	5	10 none	1121512	
PHEF-DJ 112 FE 510 S IP68	5	10 SN 6	1121479	

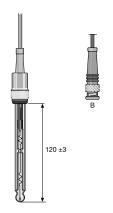
Further types on request.

pH Sensor PHEX 112 FE

pH sensor optimised for use with contaminated water with a high solids content at 6 bar/100 $^{\circ}\text{C}$ or 16 bar/25 $^{\circ}\text{C}$

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming blocked up
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

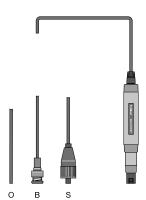

	Cable thickness	Lead length	Device plug	Order no.	
	mm	m			
PHEX 112 FE 510 S	5	10	SN 6	150025	
PHEX 112 FE 510 O	5	10	none	150084	
PHEX 112 FE 310 S	3	10	SN6	150023	
PHEX 112 FE 510 O IP68	5	10	none	1112997	
PHEX 112 FE 510 S IP68	5	10	SN6	1112998	

pH Sensor PHED 112 FE

pH sensor optimised for use with chemically contaminated but clear water at up to 80 °C/8 bar

Your Benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in chemically contaminated but clear water
- Double junction: two coupled ceramic diaphragms protect the reference system
- Long service life when chemical pollutants are present
- Special construction permits a maximum pressure of 8 bar
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)


	Cable thickness	Lead length	Device plug	Order no.	
	mm	m			
PHED 112 FE 303 B	3	3	BNC	741038	
PHED 112 FE 301 B	3	1	BNC	741037	
PHED 112 FE 302 O	3	2	none	1032717	

Further types on request.

pH sensor PHEI 112 FE

Reliable online measurement of pH values in industrial waste water/water - with DULCOTEST sensors

Your Benefits

- Solid high-grade plastic housing with integrated process connection for direct installation in the process with ½" and ¾" NPT thread
- Large dirt-repellent Teflon diaphragm protects against unwanted blocking of the reference
- Double junction reference system for stability with chemically polluted water
- Large electrolyte reservoir for long service lives

Important information:

PHEI fixed cable sensors have protection class IP68 on the fixed cable – sensor connection!

	Cable thick- ness	Lead length	Device plug	Order no.	
	mm	m			
PHEI 112 FE 510 S	5	10	SN6	1094723	
PHEI 112 FE 505 O	5	5	Open cable end	1094720	
PHEI 112 FE 510 O	5	10	Open cable end	1094722	

1.3.4 ORP Sensors with SN6 Plug-in Head

ORP sensors with SN6 plug-in head are connected to a shielded coaxial cable with the appropriate socket. The rotatable threaded sleeve on the sensor head prevents the cable from twisting when inserting and removing the sensor. The cable can therefore remain connected. This avoids moisture from contacting the plug-in contacts.

Selection guide for ORP sensors DULCOTEST, see page \rightarrow 11

ORP Sensor RHES-Pt-SE

120 ±3

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Temperature 0...60 °C Max. pressure 3.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrode Platinum Diaphragm Ceramic Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25° Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

01.01.2023

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Swimming pools, whirlpools, potable water

Resistance to Disinfectant

Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic Measuring principle, tech-

diaphragm nology

	Installation length	Order no.	
RHES-Pt-SE SLg100	100 ±3 mm	1051746	
RHES-Pt-SE	120 ±3 mm	150703	

ORP Sensor RHES-Au-SE

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs when electrolysis processes are used for disinfection and with ozone treatment at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Gold electrode to prevent faults caused by products from those electrolysis processes where the electrodes are immersed directly into the sample water
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life thanks to material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Temperature 0...60 °C Max. pressure 3.0 bar Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

ORP electrode Gold Diaphragm Ceramic Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

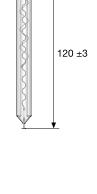
Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Swimming pools, whirlpools, potable water, with disinfectants from electrolysis processes (electrodes directly in the process water).


Resistance to Disinfectant, by-products from electrolysis process and from ozone treat-

ment process

Measuring principle, tech-

Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic nology

	Installation length	Order no.	
RHES-Au-SE	120 ±3 mm	1044544	
RHES-AU-SE SIg 100	100 ±3 mm	1092570	

ORP Sensor RHEP-Pt-SE

ORP sensor optimised for use with clear process water and conditions of up to 80 °C/6 bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life thanks to material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Rotating sensor head sleeve. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Temperature 0...80 °C Max. pressure 6.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrode Platinum Diaphragm Ceramic Sensor shaft Glass Shaft diameter 15 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

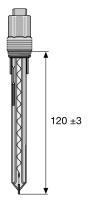
inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

all DULCOMETER controllers Controllers

Typical applications Swimming pools during pressurisation for higher temperatures and pres-

sures, potable and industrial water, electroplating.


Resistance to Disinfectant, not suitable for media containing ozone, cyanides, electrolysis

processes (electrodes directly in the sample water)

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic

nology diaphragm

	Installation length	Order no.	
RHEP-Pt-SE	120 ±3 mm	150094	
RHEP-PT -SE SLG100	100 +3 mm	150952	

ORP Sensor RHEP-Au-SE

ORP sensor optimised for use with clear process water when electrolysis processes are used for disinfection and with ozone treatment and with cyanide detoxification at conditions of up to 80 °C/6 bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Gold electrode to prevent faults caused by products from those electrolysis processes where the electrodes are immersed directly into the sample water
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Rotating sensor head sleeve. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Temperature 0 80 °C Max. pressure 6.0 bar Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

ORP electrode Gold Diaphragm Ceramic Sensor shaft Glass Shaft diameter 15 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Cyanide detoxification, ozone monitoring

Resistance to Disinfectant, by-products from electrolysis process and from ozone treat-

ment process, cyanides

Measuring principle, tech-

Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic diaphragm

nology

	Installation length	Order no.	
DUED An CE	100 + 2 mm	1002075	

ORP Sensor RHER-Pt-SE

120 ±3

ORP sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 µS/cm at up to 80 °C/6 bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Temperature 0...80 °C 6.0 bar Max. pressure Min. conductivity 50 uS/cm

Electrolyte Electrolyte with KCI supplement (salt rings in the reference electrolyte)

ORP electrode Platinum

Diaphragm PTFE ring diaphragm

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head/other versions on request

Enclosure rating

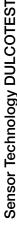
Process integration Bypass: open outlet or return of the sample water into the process line, inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Municipal and industrial waste water, cooling water, process water,

chemical applications, paper manufacturing. In general for water with a


noticeable solid fraction

Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, Teflon ring diaphragm, nology

polymer electrolyte

	Installation length	Order no.	
RHER-Pt-SE	120 ±3 mm	1002534	

Sensor Technology DULCOTEST

1.3 Sensors DULCOTEST for pH, ORP, Fluoride and **Temperature**

ORP sensor RHER-DJ-Pt-SE

120 ±3

ORP sensor optimised for use in contaminated water containing solids and for low conductivity of > 10 µS/cm at up to 80 °C/6 bar

The benefits for you

- Electrochemical combination electrode: ORP and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Rotating sensor head sleeve. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Temperature 0...80 °C 6.0 bar Max. pressure 10 μS/cm Min. conductivity

Electrolyte Electrolyte with KCI supplement (salt rings in the reference electrolyte)

ORP electrode Platinum

Diaphragm 2 x PTFE ring diaphragm, double junction

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25° Thread

PG 13.5

Electrical Connection SN6 plug-in head/other versions on request

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Municipal and industrial waste water, cooling water, process water,

chemical applications, paper manufacturing. In general for water with a

noticeable solid fraction

Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, Teflon ring diaphragm,

nology polymer electrolyte

	Installation length	Order no.	
RHER-DJ-Pt-SE	120 ±3 mm	1112882	

ORP Sensor RHEX-Pt-SE

120 ±3

ORP sensor optimised for use with contaminated water with a high solids content at 6 bar/100 °C or 16

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Rotating sensor head sleeve. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Temperature 0...100 °C

16.0 bar (25 °C), 6.0 bar (at 100 °C) Max. pressure

Min. conductivity 500 μS/cm

Electrolyte Polymer containing potassium chloride (solid)

ORP electrode Platinum

Diaphragm Circular gap (solid electrolyte)

Sensor shaft Glass Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head/other versions on request

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

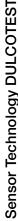
fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Waste water, industrial water, process chemistry, emulsions, suspensions,

protein-containing media. In general for water with a high solid fraction. Not

suitable for clear media. Not suitable for media with oxidation agents.

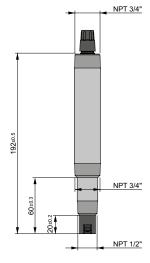

Resistance to Solids content (turbid types of water), sludge, emulsions

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, no diaphragm, polymer

nology

electrolyte

	Installation length	Order no.	
RHEX-Pt-SE	120 +3 mm	305097	


ORP Sensor RHEIC-Pt-SE

ORP sensor optimised for use in industrial waste water/water – with DULCOTEST sensors.

Your Benefits

- Mechanically resistant platinum dome permits lengthy use even when exposed to abrasive particles
- Large dirt-repellent Teflon diaphragm protects against unwanted blockage of the reference
- Double junction reference system for stability with chemically polluted water
- Large electrolyte reservoir for long service lives
- Solid high-grade plastic housing with integrated process connection for direct installation in the process with 1/2" and 3/4" NPT thread

Technical Data

Diaphragm

Temperature 0...80 °C Max. pressure 6.0 bar Min. conductivity 50 µS/cm Electrolyte

Gel containing potassium chloride with a large KCl reservoir of gel

PTFE ring diaphragm

Sensor shaft Plastic

17 \pm 0.2 mm (below the $\frac{1}{2}$ " NPT thread), 22 \pm 0.2 mm (below the $\frac{3}{4}$ " Shaft diameter

thread)

Installation length 20 ± 0.2 mm (from the lower end of the ½" thread), 60 ± 0.2 mm (from the

lower end of the 3/4" thread)

Fitting position Vertical up to +25° Thread 1/2" and 3/4" NPT thread

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Municipal and industrial waste water Cooling water, process water, water

in the chemical industry and paper making, generally for water with a solid

Measuring principle, tech-

nology

Resistance to

Disinfectant, solids content (turbid water), water-soluble chemicals direct potentiometric measurement, 2 probes, double junction, gel electrolyte, large Teflon diaphragm, separate temperature measurement for

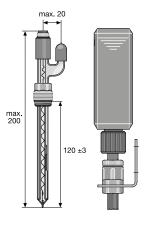
temperature compensation needed

	Order no.
RHEIC-Pt-SE	1082281

Accessories

	Oraer no.
Adapter M34/PG13.5	1077156

Sensor Technology DULCOTEST


ORP Sensor RHEN-Pt-SE

Refillable ORP sensor optimised for use with chemically contaminated water at up to 80 °C/without excess pressure

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the electrode
- 1 ceramic diaphragm made of special material, with an optimised size and with optimised pore diameter
- Long service life in the presence of chemicals dissolved in the water, which could contaminate the reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Temperature 0...80 °C

Max. pressure Operation at atmospheric pressure

Min. conductivity 150 µS/cm

Electrolyte KCL electrolyte, refillable

ORP electrode Platinum
Diaphragm Ceramic
Sensor shaft Glass
Shaft diameter 12 mm
Installation length 120 ±3 mm
Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head/other versions on request

Enclosure rating IP 65

 Process integration
 By tripod or manually

 Controllers
 all DULCOMETER controllers

Typical applications Waste water, cooling water, chemically contaminated water, only clear

types of water.

Resistance to Disinfectant, chemicals dissolved in water

Measuring principle, tech- Direct potentiometric measurement, 2 electrodes, liquid electrolyte, 1

nology ceramic diaphragm

	Installation length	Order no.	
RHEN-Pt-SE	120 ±3 mm	305091	

Delivered without PE storage tank and hose

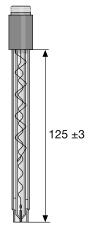
Accessories

	Capacity	Order no.	
	ml		
PE storage tank with connectors and tube	-	305058	
KCl solution, 3 molar	250 ml	791440	
KCI solution, 3 molar	1,000 ml	791441	

For the PE storage tank, we recommend fitting approx. 0.5 - 1 m above the level of the measurement medium.

Sensor Technology DULCOTEST

Sensors DULCOTEST for pH, ORP, Fluoride and 1.3 **Temperature**


ORP Sensor RHEK-Pt-S

ORP sensor with plastic shaft for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Temperature 0...60 °C

Max. pressure Operation at atmospheric pressure

Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

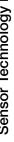
ORP electrode Platinum Diaphragm Ceramic Sensor shaft Polycarbonate Shaft diameter 12 mm Installation length 125 ±3 mm Vertical up to +25° Fitting position

Thread

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Process integration By tripod or manually all DULCOMETER controllers Controllers

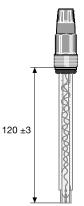

Typical applications Manual measurement e.g. swimming pools, potable water, aquarium water

Resistance to Disinfectant

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic

nology diaphraam

	Installation length	Order no.	
RHEK-Pt-S	125 ±3 mm	305052	


ORP Sensor RHEK-Pt-SE

ORP sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to $60 \, ^{\circ}\text{C/3}$ bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Technical Data

Temperature 0...60 °C
Max. pressure 3.0 bar
Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrode Platinum
Diaphragm Ceramic
Sensor shaft Polycarbonate
Shaft diameter 12 mm
Installation length 120 ±3 mm
Fitting position Vertical up to +25°

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

01.01.2023

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

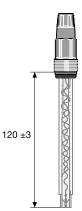
Typical applications Swimming pool, potable water, aquariums

Resistance to Disinfectant

Measuring principle, techDirect potentiometric measurement, 2 electrodes, gel electrolyte, ceramic

nology diaphragm

	Installation length	Order no.	
RHEK-Pt-SE	120 ±3 mm	1028459	


ORP Sensor RHEK-L Pt-SE

ORP sensor with plastic shaft, optimised for vertical to horizontal installation position for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- With plastic shaft to prevent glass breakage
- Horizontal (level) installation possible (90° angle) (usually limited to 0 75° angle)
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Rotating sensor head sleeve. This means that the cable can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system

Technical Data

0...60 °C Temperature Max. pressure 3.0 bar Min. conductivity 150 µS/cm

Electrolyte Gel containing potassium chloride

ORP electrode Platinum Diaphragm Ceramic Sensor shaft Polycarbonate Shaft diameter 12 mm Installation length 120 ±3 mm Fitting position Vertical to horizontal

Thread PG 13.5

Electrical Connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Controllers all DULCOMETER controllers

Typical applications Swimming pools, potable water, aquariums, horizontal installation possible

Resistance to Disinfectant

Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic

nology diaphragm

	Installation length	Order no.	
RHEK-L Pt-SE	120 ±3 mm	1034919	

1.3.5 ORP Sensors with Fixed Cable

ORP sensors with fixed cable contain a shielded coaxial cable, which is firmly connected to the sensor head. A rotatable threaded sleeve prevents the cable from twisting when inserting and removing the sensor.

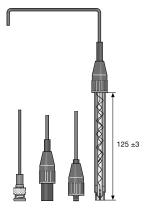
The technical data for the sensors is similar to the respective sensor with plug-in head SN6

ORP Sensor RHES-Pt-FE

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Anti-twist mechanism on the fixed cable prevents the cable from twisting when inserting and removing the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)


	Cable thickness	Lead length	Device plug	Order no.	
	mm	m			
RHES-Pt-FE 301 B	3	1	BNC	150758	
RHES-Pt-FE 303 B	3	3	BNC	150038	
RHES-Pt-FE 303 S	3	3	SN6	304949	

Further types on request.

ORP Sensor RHES-Pt-F

ORP sensor for use with manual measuring instruments, optimised for use in swimming pools / hot tubs at up to $60 \, ^{\circ}\text{C} / 3$ bar. Without threaded sleeve on the sensor head

Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

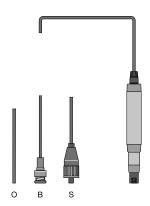
	Cable thickness	Lead length	Device plug	Order no.	
	mm	m			
RHES-Pt-F 303 B	3	3	BNC	304983	

Sensor Technology DULCOTEST

1.3 Sensors DULCOTEST for pH, ORP, Fluoride and Temperature

ORP Sensor RHEK-Pt-F

ORP sensor with plastic shaft for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to $60~^{\circ}$ C/3 bar


Your Benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable thick- ness	Lead length	Device plug	Order no.	
	mm	m			
RHEK-Pt-F 301 B	3	1	BNC	150953	
RHEK-Pt-F 301 S	3	1	SN 6	304997	
RHEK-Pt-F 501 D	5	1	DIN	304998	

Further types on request.

ORP sensor RHEIC-Pt-FE

Your Benefits

- Mechanically resistant platinum dome permits lasting use even when exposed to abrasive particles
- Large dirt-repellent Teflon diaphragm protects against unwanted blockage of the reference
- Double junction reference system for stability with chemically polluted water
- Large electrolyte reservoir for long service lives
- Solid high-grade plastic housing with integrated process connection for direct installation in the process with ½" and ¾" NPT thread

	Cable thick- ness	Lead length	Device plug	Order no.	
	mm	m			
RHEIC-PT-FE 510 S	5	10	SN6	1096793	
RHEIC-PT-FE 505 O	5	5	Open cable end	1096775	
RHEIC-PT-FE 510 O	5	10	Open cable end	1096784	

DULCOTEST Sensors for Fluoride 1.3.6

DULCOTEST fluoride sensors are ion selective sensors, which function according to the potentiometric measuring principle and are suitable for determining the concentration of fluoride anions in aqueous solutions. The measuring point with the FPV1 type measuring transducer was optimised for use in monitoring the fluoridation of potable water in waterworks (measurement range up to 10 ppm). The measuring point with the measuring transducer FP 100 V1 with a measurement range up to 100 ppm is used for clear waste water free of solid material.

Fluoride Sensor FLEP 010-SE / FLEP 0100-SE

Highly selective, online fluoride sensor, for the fluoridation of potable water and monitoring of industrial waste water in the semiconductor industry and electroplating with a pH of up to 9.5

Your Benefits

- Highly selective measurement of fluoride by LaF₃ single crystal silicon
- Unique pH range of up to pH 9.5 by optimisation of the electrolyte
- Two measuring ranges available: 0.05 -10 ppm for potable water; 0.5 -100 ppm for waste water. Higher measuring ranges on request

Technical Data

Measured variable Fluoride ion concentration Reference method

Photometrically (Photometer DT2C) With transmitter FPV1: 0.05...10 mg/l Measuring range With transmitter FP100V1: 0.5...100 mg/l

pH-range 5.5...9.5 Temperature 1...35 °C

7.0 bar (no pressure surges) Max. pressure

100 μS/cm Min. conductivity Shaft diameter 12.0 mm Installation length 120 mm Thread PG 13.5

Electrical Connection SN6 plug-in head

Enclosure rating

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

10...200 l/h Intake flow (recommended) 20 l/h

Response time T95 (open) 30 s (for conc. > 0.5 ppm)

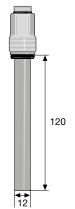
Shelf life 6 months

Sensor fitting Bypass fitting DLG IV D1C, DAC, DULCOMARIN Controllers

Typical applications Monitoring the fluoridation of potable water in waterworks, industrial waste

water in the semiconductor industry and electroplating.

Disinfectant, solids content (turbid types of water) Resistance to


Measuring principle, tech-Direct potentiometric measurement, 2 electrodes, gel electrolyte, ceramic diaphragm, separate temperature measurement needed for temperature nology

compensation. Low pH values of < 5 reduce the concentration of free fluoride ions by forming undissociated hydrofluoric acid (HF). High pH values > 9.5 influence the signal and the slope at concentrations in the lower ppm range. The calibration line flattens off there (gentler slope) and the fluoride

sensor is outside its linear range.

Order no FLEP 010-SE / FLEP 0100-SE 1028279

Notes: A 4-20 mA transmitter, a reference electrode and sensor for temperature compensation are needed in addition to the fluoride electrode. Measuring ranges from 5 ... 1,000 mg/l and 50 ... 10,000 mg/l available on request.

Accessories

	Order no.
Measuring transducer 4-20 mA FPV1	1028280
Measuring transducer 4-20 mA FP 100 V1	1031331
Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
Reference electrode REFP-SE	1018458
Reference electrode REFR-DJ-SE	1083790
Pt 100-SE temperature sensor	305063
Polishing paste	559810

Panel-mounted fluoride measuring station

The panel-mounted measuring points that could previously be ordered with order numbers 1010602 (230 V) and 1010603 (115 V) can now be ordered as measuring points of the DULCOTROL DWCa product line.

Overview of DULCOTROL DWCa_P Potable Water/ F&B, see page \rightarrow 239

1.3.7

DULCOTEST Temperature Sensors

Temperature measurement with DULCOTEST sensors: Can be used for direct temperature measurement or temperature compensation during measurement of pH, fluoride, conductivity, chlorine dioxide or hydrogen peroxide.

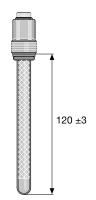
Your Benefits

- Select Pt 100 or Pt 1000, depending on measuring range and accuracy required.
- Sturdy design with dimensions of a standard pH sensor; the sensor element is integrated in a chemically inert glass sleeve.
- Easily installed in a similar way to standard pH sensors with a PG 13.5 thread in existing fittings.
- Transmitter with display/operation and without display/operation for transmission/conversion of the primary signal into a 4-20 mA signal and for transmission to a central control unit (PLC).

Technical Details

- $\hfill \blacksquare$ Type Pt 100: for wide range measurements and with the controllers D1C, DAC and DULCOMARIN 3
- Type Pt 1000: for high resolution with transmitter DMT and controllers DAC and DULCOMARIN 3

Field of Application


Temperature measurement is universally used either to directly measure the temperature or for temperature compensation.

Temperature 0...100 °C
Max. pressure 10.0 bar
Thread PG 13.5
Electrical Connection SN6

Typical applications Temperature measurement and pH temperature correction.

	Order no.
Pt 100-SE temperature sensor	305063
Pt 1000-SE temperature sensor	1002856

1.4.1 Conductivity Sensors

The advantages at a glance:

- Large range of sensor types tailored to meet different requirements offering excellent value for money.
- Precise and reliable online measurement enables efficient processes and outstanding process reliability.
- Long service lives and short maintenance intervals reduce downtime and increase availability of the measured information.
- Completely pre-assembled sets containing fittings and sensors for simple, fast and trouble-free installation.

Note the following points for optimum operation of conductivity sensors:

- Install the sensors so that the electrodes are always covered by the measuring liquid.
- Keep measuring lines as short as possible
- Temperature compensation with fluctuating temperatures
- Regular cleaning depending on the application
- Ensure that the cell constant and measuring range match each other

Conductivity sensor selection guide

Conductivity > 20 mS/cm and/or film-forming medium and/or chemically aggressive medium

yes ↓

inductive conductivity measurement

Compact controller can be used in the application?

yes ↓

Do the following conditions exist? aggressive chemicals, with the exception of lyes and/or Temperatures > 80 °C and/or measured value < 200 μS/cm

Type ICT 8 for installation in pipes with adapter accessory, for immersion with immersion fitting accessory

no

conductive conductivity measurement

Further selection according to summary table:

- Measuring range
- Material (chemical compatibility)
- Temperature
- hydraulic process connection
- electrical connection
- Compatibility of measuring and control

1

Product ranges LF, LMP, CK, CCT

yes ↓ ↓ no

J.

Series ICT 2 Installation in pipes with stainless steel flange accessory

For immersion with accessory: immersion fitting IMA - ICT 2

Type ICT 5 for installation in pipes Type ICT 5for immersion

Overview Table for Conductivity Sensors

Sensor type	Measuring range	Cell constant	temper- ature max.	Max. Sensor pres- shaft sure	ature compen- sation	tion	connection	Compatible controllers
			°C	bar				
LMP 001	0.0150 μS/cm	0.01 cm ⁻¹ ±5 %	70	16.0 PP	Pt 100	Flow, 3/4" male thread Bypass: Fitting BAMa	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca
LMP 001- HT	0.0150 μS/cm	0.01 cm ⁻¹ ±5 %	120	16.0 PVDF	Pt 100	Flow, 3/4" male thread Bypass: Fitting BAMa	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca
LMP 01	0.1500 μS/cm	0.10 cm ⁻¹ ±5 %	70	16.0 PP	Pt 100	Flow, 3/4" male thread Bypass: Fitting BAMa	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca

Sensor type	Measuring range	Cell constant	Medium temper- ature max. °C	Max. Sensor pres- shaft sure bar	Temper- ature compen- sation	Process integra- tion	Electrical connection	Compatible controllers
LMP 01-TA	0.1500 μS/cm	0.10 cm ⁻¹ ±5 %	70	16.0 PP	Pt 100	Sensor in immer- sion fitting, 1m integrated	5 m fixed cable	DCCa, DACb, DMTa, D1Ca
LMP 01-HT	0.1500 μS/cm	0.10 cm ⁻¹ ±5 %	120	16.0 PVDF	Pt 100	Flow, 3/4" male thread Bypass: Fitting BAMa	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca
LFT 1FE	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	80	16.0 Ероху	Pt 100	PG13.5 male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	5 m fixed cable (4 x 0.5 mm ²)	DMTa, D1Ca
LFTK 1 FE- 5m-shd	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	80	16.0 Ероху	Pt 1000	PG 13.5 male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	5 m fixed cable (4 x 0.25 mm²), screened	DCCa, DACb, DMTa, AE- GIS II, AEGIS X
LFTK 1 FE- 3m-shd	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	80	16.0 Ероху	Pt 1000	PG 13.5 male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	3 m fixed cable (4 x 0.25 mm²), screened	DCCa, DACb, DMTa, AE- GIS II, AEGIS X
LF 1 DE	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	80	16.0 Ероху	None, only for applica- tions with constant tempera- ture	PG 13.5 male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
LFT 1 DE	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	80	16.0 Ероху	Pt 100	PG 13.5 male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
LFTK 1 DE	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	80	16.0 Ероху	Pt 1000	PG 13.5 male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	DIN 4-pin angle plug	DCCa, DACb, DMTa, AE- GIS II, AEGIS X
LFT 1 1/2"	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	80	16.0 Ероху	Pt 100	G1/2" male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
LFTK 1 1/2"	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	80	16.0 Ероху	Pt 1000	G1/2" male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	DIN 4-pin angle plug	DCCa, DACb, DMTa, AE- GIS II, AEGIS X
CK 1	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	150	16.0 PES	None, only for applica- tions with constant tempera- ture	Flow: R 1" male thread	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Sensor type	Measuring range	Cell constant	Medium temper- ature max. °C	Max. Sensor pres- shaft sure bar	Temper- ature compen- sation	Process integra- tion	Electrical connection	Compatible controllers
CKPt 1	0.0120 mS/cm	1.00 cm ⁻¹ ±5 %	150	16.0 PES	Pt 100	Flow: R 1" male thread	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
LM 1	0.120 mS/cm	1.00 cm ⁻¹ ±5 %	70	16.0 PP	-	Flow: G 3/4" male thread Bypass: Fitting BAMa	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
LM 1-TA	0.120 mS/cm	1.00 cm ⁻¹ ±5 %	70	16.0 PP	-	Sensor in immersion fitting, 1m integrated	5 m fixed cable, screened	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
LMP 1	0.120 mS/cm	1.00 cm ⁻¹ ±5 %	70	16.0 PP	Pt 100	Flow: G 3/4" male thread Bypass: Fitting BAMa	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
LMP 1-TA	0.120 mS/cm	1.00 cm ⁻¹ ±5 %	70	16.0 PP	Pt 100	Sensor in immersion fitting, 1m integrated	5 m fixed cable, screened	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
LMP 1-HT	0.120 mS/cm	1.00 cm ⁻¹ ±5 %	120	16.0 PVDF	Pt 100	Flow: G 3/4" male thread Bypass: Fitting BAMa	DIN 4-pin angle plug	DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X
CCT 1-mA	0.220 mS/cm	-	50	8.0 PVC	NTC	Bypass: Fittings BAMa, DGMa, DLG III Flow: Fitting INLI	4-wire cable, 0.25 mm ² , cable diame- ter 5.7	DAC, D1C, AEGIS II,
CTFS	0.110 mS/cm	10.00 cm ⁻¹ ±5 %	50	7.0 PP	Semicon- ductor	NPT 3/4" male thread Flow via adapter Bypass: Fittings BAMa, DGMa, DLG III	3 m fixed cable, extendible to 50 m, with cable type: 0.5 mm ² or AWG 22.	AEGIS II, AEGIS X
ICT 5	0.22,000 mS/ cm	6.25 cm ⁻¹ ±5 %	80	10.0 PP	Pt 1000	Flow DN 40	10 m fixed cable, 7x 0.35 mm ² via a termi- nal,	DCCa
ICT 5-IMA	0.22,000 mS/ cm	6.25 cm ⁻¹ ±5 %	60	0.0 PP	Pt 1000	Immersion, sensor integrated in 1 m immersion fitting	10 m fixed cable, 7x 0.35 mm ² via a terminal,	DCCa
ICT 2	0.022,000 mS/ cm		125	16.0 PFA	Pt 100, class A, complete- ly extru- sion-coat- ed	G 3/4" male thread for - flow via flange - immersion: on immersion pipe, 1m (accessories)	5 m fixed ca- ble, 6x 0.35 mm² via a terminal, on Compact	DCCa
ICT 8-mA	0.2200 mS/cm	-	50	6 PP	Semicon- ductor	1/2" BSP male thread for flow: on PVC pipes DN50 immersion: on im- mersion pipe, 1m	2 + 10 m fixed cable (6 x 0.25 mm²),	DAC, D1C, AEGIS II, AEGIS X, DULCOMARIN

General information:

 ${f 1}$ The transducer DMTa is provided to convert the measurement signal into a temperature-compensated 4-20 mA signal.

- 2 Terminal assignment for the DIN 4-pin angle plug:
- Electrodes: Earth and 2
- Pt 100/1000: 1 and 3
- **3** With DIN-4-pin angle plugs, the cable must be screened if the sensor is connected to measuring instrument types DCCa, DMTa, DACa, AEGIS II or AEGIS X.
- **4** An adapter set PG 13.5/1" (order no. 1002190) is needed for installation in the in-line probe housing type DLG III (1" hole).
- **5** Sensor adapters PG13.5 (1113802), G 3/4" (1113801), G1"(1113803), NPT 3/4"(1080293) are needed for installation in the bypass armature type BAMa.

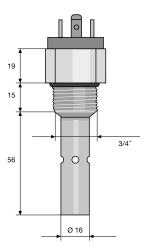
Measuring line for conductive conductivity sensors, see page \rightarrow 135

1.4.2 2-Electrode Conductivity Sensors

Conductive conductivity sensors measure the electrolytic conductivity indirectly via the charge transfer between two probes immersed in the medium to be measured. The sensor types with cell constants k=0.01 and k=0.1 cm⁻¹ are especially suitable for measuring the lowest electrolytic conductivities of < 1 μ S/cm in pure and ultra-pure water.

The sensor types with cell constants k=1 cm⁻¹ are used in numerous kinds of water without film-forming components up to 20 mS/cm. The cost-effective sensor range LF(T) is used in clear, chemically uncontaminated water.

The sensor ranges LM(P), CK and CKPt can also be used in chemically contaminated kinds of water and at higher temperatures.


Conductivity Sensor LMP 001

Sensor for measurement of the lowest electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers DCCa, DACb, DMTa, D1Ca

Your Benefits

- Measured variable: electrolytic conductivity above 0.01 µS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

Technical Data

 Measuring range
 0.01...50 µS/cm

 Cell constant
 0.01 cm⁻¹ ±5 %

 Temperature measurement
 Pt 100

 Medium temperature
 0...70 °C

Max. pressure16.0 bar (at 50 °C)SensorsStainless steel 1.4571Sensor shaftPP

Thread 3/4"
Installation length 71 mm

Process integration Inline: direct installation into the pipework, bypass: with or without return of

the sample water into the process line

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Clean water applications, monitoring ion exchangers and reverse osmosis

systems.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Controllers Compact DCCa, DACb, DMTa, D1Ca

Measuring principle, techConductive, 2 electrodes. Integrated temperature measurement

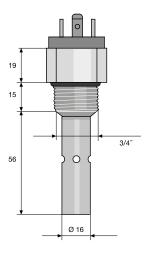
nology

 LMP 001
 Order no.

Note the general information on page \rightarrow 104 (Overview table for conductivity sensors)

Sensor Technology DULCOTEST

1.4 DULCOTEST Sensors for Conductivity


Conductivity Sensor LMP 001-HT

Sensor for measurement of the lowest electrolytic conductivity for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with the controllers DCCa, DACb, DMTa, D1Ca

Your Benefits

- Measured variable: electrolytic conductivity above 0.01 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Temperature resistance up to 100 °C

Technical Data

 $\begin{tabular}{llll} \mbox{Measuring range} & 0.01...50 \ \mu\mbox{S/cm} \\ \mbox{Cell constant} & 0.01 \ \mbox{cm}^{-1} \pm 5 \ \% \\ \mbox{Temperature measurement} & Pt \ 100 \\ \mbox{Medium temperature} & 0...120 \ \mbox{°C} \\ \mbox{Max. pressure} & 16.0 \ \mbox{bar (at } 100 \ \mbox{°C}) \\ \label{eq:max.pressure} \end{tabular}$

Sensors Stainless steel 1.4571
Sensor shaft PVDF

Thread 3/4" Installation length 71 mm

Process integration Inline: direct installation into the pipework, bypass: with or without return of

the sample water into the process line

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications General applications at higher temperatures, clean water applications,

condensate.

Resistance to Ingredients in the water of the target application, taking into account the

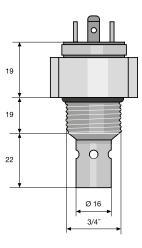
compatibility of the material

Controllers Compact DCCa, DACb, DMTa, D1Ca

Measuring principle, techConductive, 2 electrodes. Integrated temperature measurement

ology

	Order no.
LMP 001-HT	1020509


Conductivity Sensor LMP 01

Sensor for measurement of low electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers DCCa, DACb, DMTa, D1Ca

Your Benefits

- Measured variable: electrolytic conductivity above 0.1 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

Technical Data

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Sensor shaft PP
Thread 3/4"
Installation length 46 mm

Process integration Inline: direct installation into the pipework, bypass: with or without return of

the sample water into the process line

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Monitoring ion exchangers, reverse osmosis systems and desalination

systems.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

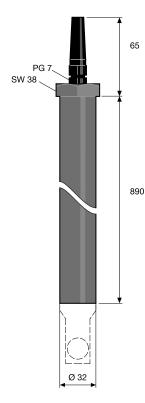
Controllers Compact DCCa, DACb, DMTa, D1Ca

Measuring principle, techConductive, 2 electrodes. Integrated temperature measurement

nology

 Order no.

 LMP 01
 1020510


Conductivity Sensor LMP 01-TA

Sensor for measurement of low electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers DCCa, DACb, DMTa, D1Ca

Your Benefits

- Measured variable: electrolytic conductivity above 0.1 µS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Simple installation in tanks and containers by sensor ready mounted in the immersion tube
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

Technical Data

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Sensor shaft PF

Thread M 28 x 1.5 for TA-LM in-line probe fitting

Installation length Max. 1 m

Process integration Immersion through an immersion tube

Electrical Connection 5 m fixed cable

Enclosure rating IP 65

Typical applications Monitoring ion exchangers, reverse osmosis systems and desalination

systems.

Resistance to Ingredients in the water of the target application, taking into account the

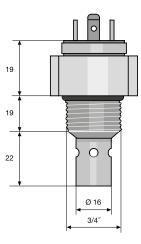
compatibility of the material

Controllers Compact DCCa, DACb, DMTa, D1Ca

Measuring principle, techConductive, 2 electrodes. Integrated temperature measurement

nology

		Order no.	
LMP 01-TA	Sensor integrated in immersion fitting	1020512	
LMP 01-FE	Replacement sensor for LMP 01-TA	1020626	
	with 5 m fixed cable		


Conductivity Sensor LMP 01-HT

Sensor for measurement of low electrolytic conductivities for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with the controllers DCCa, DACb, DMTa, D1Ca

Your Benefits

- Measured variable: electrolytic conductivity above 0.1 μm/cm
- Cost-effective sensor for clear, chemically contaminated water
- Temperature resistance up to 100 °C
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

Technical Data

Measuring range 0.1...500 µS/cm Cell constant 0.10 cm⁻¹ ±5 % Pt 100 Temperature measurement Medium temperature 0 ... 120 °C 16.0 bar (at 100 °C) Max. pressure Sensors Stainless steel 1.4571

Sensor shaft **PVDF** Thread 3/4" Installation length 46 mm

Inline: direct installation into the pipework, bypass: with or without return of Process integration

the sample water into the process line

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications General applications at higher temperatures: industrial, process water,

condensate.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Compact DCCa, DACb, DMTa, D1Ca Controllers

Measuring principle, tech-Conductive, 2 electrodes. Integrated temperature measurement

nology

	Order no.
LMP 01-HT	1020511

Sensor Technology DULCOTEST

DULCOTEST Sensors for Conductivity 1.4

Conductivity Sensor LFT 1 FE

Cost-effective sensor for measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector. For operation with controllers DMTa, D1Ca

Your Benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

Technical Data

Measuring range 0.01...20 mS/cm Cell constant 1.00 cm⁻¹ ±5 %

Pt 100 Temperature measurement

0 ... 80 °C (at 1 bar) Medium temperature Max. pressure 16.0 bar (at 25 °C) Sensors Special graphite

Sensor shaft Ероху Thread PG 13.5 Installation length 120 ±3 mm

Process integration Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection 5 m fixed cable (4 x 0.5 mm²)

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only limited

applicability for taking measurements in cleaning solutions containing

surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Compatible controllers DMTa, D1Ca

Measuring principle, tech-Conductive, 2 electrodes. Integrated temperature measurement

nology

120

Ø 12

Order no. LFT 1FE 1001374

Conductivity Sensor LFTK 1 FE-5m-shd

Cost-effective sensor for measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector (5 m). For operation with controllers DCCa, DACb, DMTa, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise temperature compensation in limited temperature ranges replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

Technical Data

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \mbox{ mS/cm} \\ \mbox{Cell constant} & 1.00 \mbox{ cm$^{-1}$ $\pm 5 $\%$} \\ \mbox{Temperature measurement} & \mbox{Pt } 1000 \\ \end{tabular}$

Medium temperature0 ... 80 °C (at 1 bar)Max. pressure16.0 bar (at 25 °C)SensorsSpecial graphite

Sensor shaftEpoxyThreadPG 13.5Installation length120 ±3 mm

Process integration Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection 5 m fixed cable (4 x 0.25 mm²), screened

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Compatible controllers DCCa, DACb, DMTa, AEGIS II, AEGIS X

Measuring principle, tech- Conductive, 2 electrodes. Integrated temperature measurement

oloav

120

Ø 12

 LFTK 1 FE-5m-shd
 Order no.

 1046132
 1046132

Conductivity Sensor LFTK 1 FE-3m-shd

Cost-effective sensor for measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector (3 m). For operation with controllers DCCa, DACb, DMTa, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise temperature compensation in limited temperature ranges replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

Technical Data

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \mbox{ mS/cm} \\ \mbox{Cell constant} & 1.00 \mbox{ cm}^{-1} \pm 5 \mbox{ \%} \\ \mbox{Temperature measurement} & \mbox{Pt } 1000 \\ \end{tabular}$

Medium temperature0 ... 80 °C (at 1 bar)Max. pressure16.0 bar (at 25 °C)SensorsSpecial graphiteSensor shaftEnough

Sensor shaftEpoxyThreadPG 13.5Installation length120 ±3 mm

Process integrationBypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection 3 m fixed cable (4 x 0.25 mm²), screened

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only limited

applicability for taking measurements in cleaning solutions containing

surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Compatible controllers DCCa, DACb, DMTa, AEGIS II, AEGIS X

Measuring principle, tech-Conductive, 2 electrodes. Integrated temperature measurement

nology

120

Ø 12

 LFTK 1 FE-3m-shd
 Order no.

 1046010
 1046010

Conductivity Sensor LF 1 DE

120 ±3

Cost-effective sensor for measurement of electrolytic conductivity in clear, uncontaminated water. For applications with a constant temperature, with DIN 4-pin plug. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Cost-effective version without integral temperature measurement with constant temperature of the medium to be measured
- DIN 4-pin plug for simple installation

 $\begin{array}{lll} \mbox{Measuring range} & 0.01...20 \ \mbox{mS/cm} \\ \mbox{Cell constant} & 1.00 \ \mbox{cm}^{-1} \ \pm 5 \ \% \\ \end{array}$

Temperature measurement None, only for applications with constant temperature

Medium temperature0 ... 80 °C (at 1 bar)Max. pressure16.0 bar (at 25 °C)SensorsSpecial graphite

Sensor shaftEpoxyThreadPG 13.5Installation length120 ±3 mm

Process integration Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only limited

applicability for taking measurements in cleaning solutions containing

surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Compatible controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Measuring principle, techConductive, 2 electrodes

nology

 Order no.

 LF 1 DE
 1001375

Conductivity Sensor LFT 1 DE

120 ±3

Cost-effective sensor for measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

Measuring range 0.01...20 mS/cm Cell constant 1.00 cm⁻¹ ±5 % Temperature measurement Pt 100

Medium temperature 0 ... 80 °C (at 1 bar) 16.0 bar (at 25 °C) Max. pressure Sensors Special graphite

Sensor shaft Ероху Thread PG 13.5 Installation length 120 ±3 mm

Process integration Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection DIN 4-pin angle plug

Enclosure rating

Typical applications Potable water, cooling water, industrial process water. Sensors of the LF

series have only limited applicability for taking measurements in cleaning solutions containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Compatible controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Measuring principle, tech-Conductive, 2 electrodes. Integrated temperature measurement

nology

LFT 1 DE

Order no. 1001376

Conductivity Sensor LFTK 1 DE

120 ±3

Cost-effective sensor for measurement of electrolytic conductivity in clear, uncontaminated water with integrated temperature measurement and DIN 4-pin plug. For operation with controllers DCCa, DACb, DMTa, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

Technical Data

 $\begin{array}{lll} \mbox{Measuring range} & 0.01...20 \ \mbox{mS/cm} \\ \mbox{Cell constant} & 1.00 \ \mbox{cm}^{-1} \pm 5 \ \% \\ \mbox{Temperature measurement} & \mbox{Pt } 1000 \\ \end{array}$

Medium temperature0 ... 80 °C (at 1 bar)Max. pressure16.0 bar (at 25 °C)SensorsSpecial graphite

Sensor shaftEpoxyThreadPG 13.5Installation length120 ±3 mm

Process integration Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only limited

applicability for taking measurements in cleaning solutions containing

surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Compatible controllers DCCa, DACb, DMTa, AEGIS II, AEGIS X

Measuring principle, tech-Conductive, 2 electrodes. Integrated temperature measurement

nology

 UFTK 1 DE
 Order no.

 1002822
 1002822

Conductivity sensor LFT 1 1/2"

120 ±3

Cost-effective sensor for measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug and 1/2-inch screw-in thread. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Hydraulic connector with 1/2" thread as an alternative to the corresponding standard design with PG 13.5
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

Measuring range 0.01...20 mS/cm Cell constant 1.00 cm⁻¹ ±5 % Temperature measurement Pt 100

0 ... 80 °C (at 1 bar) Medium temperature Max. pressure 16.0 bar (at 25 °C) Sensors Special graphite

Sensor shaft Ероху 1/2" Thread Installation length 120 ±3 mm

Process integration Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only limited

applicability for taking measurements in cleaning solutions containing

surfactants and media containing solvents.

Unsuitable for chemically contaminated water and water containing Resistance to

film-forming ingredients

Compatible controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Measuring principle, tech-Conductive, 2 electrodes. Integrated temperature measurement

nology

Order no. LFT 1 1/2" 1001378

Conductivity sensor LFTK 1 1/2"

120 ±3

Cost-effective sensor for measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug and 1/2-inch screw-in thread. For operation with controllers DCCa, DACb, DMTa, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 μC/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Hydraulic connector with 1/2" thread as an alternative to the corresponding standard design with PG 13.5 thread
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise compensation in limited temperature ranges and with longer cables. Replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

Medium temperature0 ... 80 °C (at 1 bar)Max. pressure16.0 bar (at 25 °C)SensorsSpecial graphite

Sensor shaft Epoxy
Thread 1/2"
Installation length 120 ±3 mm

Process integration Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only limited

applicability for taking measurements in cleaning solutions containing

surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Compatible controllers DCCa, DACb, DMTa, AEGIS II, AEGIS X

Measuring principle, techConductive, 2 electrodes. Integrated temperature measurement

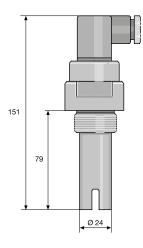
nology

Order no.

LFTK 1 1/2" 1002823

Sensor Technology DULCOTEST

1.4 DULCOTEST Sensors for Conductivity


Conductivity Sensor CK 1

Sensor for measurement of electrolytic conductivity for clear, chemically contaminated water with higher but constant temperature with DIN 4-pin plug. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Resistant to water ingredients in target applications thanks to injection-moulded design without adhesive or seals
- High temperature resistance up to 150 °C

Technical Data

 $\begin{array}{lll} \mbox{Measuring range} & 0.01...20 \ \mbox{mS/cm} \\ \mbox{Cell constant} & 1.00 \ \mbox{cm}^{-1} \pm 5 \ \% \\ \end{array}$

Temperature measurement None, only for applications with constant temperature

Medium temperature0 ... 150 °C (at 1 bar)Max. pressure16.0 bar (at 20 °C)SensorsSpecial graphite

Sensor shaftPESThreadR 1"Installation length79 mm

Process integration Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Cooling, industrial, process water, tank and pipe, cleaning systems in

breweries, dairies, media separation.

Resistance to Ingredients in the water of the target application, taking into account the

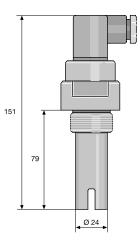
compatibility of the material

Compatible controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Measuring principle, techConductive, 2 electrodes

nology

	Order no.
CK 1	305605


Conductivity Sensor CKPt 1

Sensor for measurement of electrolytic conductivity for clear, chemically contaminated water and higher temperatures. With integrated temperature measurement and DIN 4-pin plug. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 10 µS/cm
- Resistant to water ingredients in target applications thanks to injection-moulded design without adhesive or seals
- High temperature resistance up to 150 °C
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

Technical Data

 Measuring range
 0.01...20 mS/cm

 Cell constant
 1.00 cm⁻¹ ±5 %

Temperature measurement Pt 100

Medium temperature0 ... 150 °C (at 1 bar)Max. pressure16.0 bar (at 20 °C)SensorsSpecial graphite

Sensor shaftPESThreadR 1"Installation length79 mm

Process integration Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable

fitting), tank, channel: Immersion in the immersion tube

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Cooling, industrial, process water, tank and pipe, cleaning systems in

breweries, dairies, media separation.

Resistance to Ingredients in the water of the target application, taking into account the

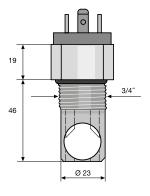
compatibility of the material

Compatible controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Measuring principle, techConductive, 2 electrodes. Integrated temperature measurement

oloav

	Order no.	
CKPt 1	305606	


Conductivity Sensor LM 1

Sensor for measurement of electrolytic conductivity for clear and also chemically contaminated water. With DIN 4-pin plug. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the constituents in the water of the target application

Technical Data

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.1...20 \mbox{ mS/cm} \\ \mbox{Cell constant} & 1.00 \mbox{ cm$^{-1}$ $\pm 5 $\%$} \\ \end{tabular}$

Temperature measurement None, only for applications with constant temperature

 $\begin{array}{ll} \textbf{Medium temperature} & 0 \dots 70 \ ^{\circ}\text{C (at 1 bar)} \\ \textbf{Max. pressure} & 16.0 \ \text{bar (at 50 \ ^{\circ}\text{C)}} \\ \end{array}$

SensorsGraphiteSensor shaftPPThread3/4"Installation length46 mm

Process integration Inline: direct installation into the pipework, bypass: with or without return of

the sample water into the process line

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial, process water, media separation.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Conductive, 2 electrodes

Compatible controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

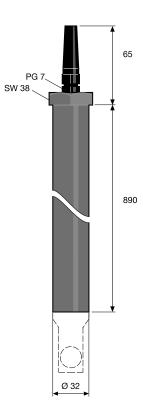
Measuring principle, tech-

nology

Order no.

LM 1 740433

Sensor Technology DULCOTEST


Conductivity Sensor LM 1-TA

Sensor for measurement of electrolytic conductivity for clear and also chemically contaminated water. Fully assembled in an immersion fitting. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Simple installation in tanks, containers etc. by sensor ready mounted in the immersion tube

Technical Data

 Measuring range
 0.1...20 mS/cm

 Cell constant
 $1.00 \text{ cm}^{-1} \pm 5 \text{ }\%$

Temperature measurement None, only for applications with constant temperature

SensorsGraphiteSensor shaftPP

Thread M 28 x 1.5 for TA-LM in-line probe fitting

Installation length Max. 1 m

Process integration Tank, channel: Immersion through an immersion tube

Electrical Connection 5 m fixed cable, screened

Enclosure rating IP 68

Typical applications Potable, cooling, industrial, process water, media separation.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Compatible controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

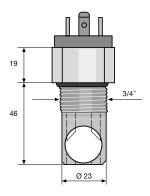
Measuring principle, techConductive, 2 electrodes

nology

		Order no.	
LM 1-TA	Sensor integrated in immersion fitting	1020528	
LM 1-FE	Replacement sensor for LM 1-TA	1020627	

Sensor Technology DULCOTEST

1.4 DULCOTEST Sensors for Conductivity


Conductivity Sensor LMP 1

Sensor for measurement of electrolytic conductivity for clear and also chemically contaminated water. With integrated temperature measurement with DIN 4-pin plug. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

Technical Data

Medium temperature0 ... 70 °C (at 1 bar)Max. pressure16.0 bar (at 50 °C)

SensorsGraphiteSensor shaftPPThread3/4"Installation length46 mm

Process integration Inline: direct installation into the pipework, bypass: with or without return of

the sample water into the process line

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial, process water, media separation.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Compatible controllers DCCa, D

Measuring principle, tech-

nology

LMP 1

DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Conductive, 2 electrodes. Integrated temperature measurement

Order no. 1020513

Conductivity Sensor LMP 1-TA

Sensor for measurement of electrolytic conductivity for clear and also chemically contaminated water. With integrated temperature measurement, fully assembled in an immersion fitting. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Simple installation in tanks, containers etc. by sensor ready mounted in the immersion tube

Technical Data

Temperature measurement Pt 100

SensorsGraphiteSensor shaftPP

Thread M 28 x 1.5 for TA-LM in-line probe fitting

Installation length 1 m

Process integration Tank, channel: Immersion through an immersion tube

Electrical Connection 5 m fixed cable, screened

Enclosure rating IP 65

Typical applications Potable, cooling, industrial, process water, media separation.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Compatible controllers

Measuring principle, tech-

nology

LMP 1-TA

LMP 1-FE

DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

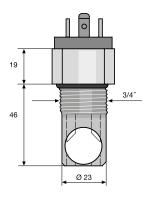
Conductive, 2 electrodes

	Order no.	
Sensor integrated in immersion fitting	1020525	
Replacement sensor for LMP 1-TA	1020727	

Order no

Sensor Technology DULCOTEST

DULCOTEST Sensors for Conductivity 1.4


Conductivity Sensor LMP 1-HT

Sensor for measurement of electrolytic conductivity for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with controllers DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

Your Benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Temperature resistance up to 100 °C

Technical Data

0.1...20 mS/cm Measuring range Cell constant 1.00 cm⁻¹ ±5 % Temperature measurement Pt 100

Medium temperature 0 ... 120 °C (at 1 bar)

Max. pressure 16.0 bar (at 100 °C)

Sensors Graphite Sensor shaft **PVDF** 3/4" Thread Installation length 46 mm

Process integration Inline: direct installation into the pipework, bypass: with or without return of

the sample water into the process line

Electrical Connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications General applications at higher temperaturesprocess water, process water

from electroplating, media separation, with CIP (cleaning in place). Ingredients in the water of the target application, taking into account the

Resistance to

compatibility of the material DCCa, DACb, DMTa, D1Ca, AEGIS II, AEGIS X

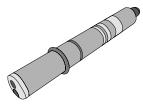
Compatible controllers

Measuring principle, tech-Conductive, 2 electrodes. Integrated temperature measurement

nology

Order no.

LMP 1-HT 1020524


Conductivity sensor CCT 1-mA

Sensor for measurement of electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and factory-calibrated 4...20 mA output signal. For operation with controllers DAC, D1C, AEGIS II, AEGIS X, DULCOMARIN.

Your Benefits

- Measured variable: electrolytic conductivity up to 20 mS/cm
- Fail-safe 4-20 mA output signal for flexible connection to measuring equipment with standard 4-20 mA input
- Integrated temperature sensor for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Simple connection to a process with the ProMinent bypass fittings BAMa, DGMA, DLGIII and INLI

Technical Data

Measuring range0.2...20 mS/cmTemperature measurementNTC, integratedMedium temperature0... 50 °C (at 1 bar)Max. pressure8.0 bar (at 25 °C)Sensor headPMMA

Sensors Special graphite

Sensor shaft PVC

Installation length 51 mm / 71 mm

Process integration Bypass via bypass fittings BAMa, DGMa, DLGIII or installation into G1" PP

pipe via sensor fitting INLI

Electrical Connection 4-wire cable, 0.25 mm², cable diameter 5.7

Supply voltage 12...36 V DC

Output signal 4...20 mA, temperature-compensated, factory-calibrated, electrically

isolated IP 65

Enclosure rating IP 65
Typical applications IP 65
Cooling, industrial, process water, general water with higher salt content up

o 20 mS/cm.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Compatible controllers DAC, D1C, AEGIS II, AEGIS X, DULCOMARIN

Measuring principle, techConductive, 2 electrodes. Integrated temperature measurement, integrated

nology 4...20 mA transducer

 CCT 1-mA-20 mS/cm
 Order no.

 1081545

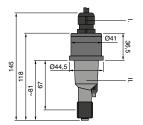
Sensor Technology DULCOTEST

1.4 DULCOTEST Sensors for Conductivity

1.4.3 Inductive Conductivity Sensors

Inductive conductivity sensors consist of a transducer, encapsulated in an inert material. The electrolytic conductivity is measured inductively without direct contact with the medium.

The sensors are used to measure electrolytic conductivity over a wide measuring range, even in heavily contaminated and/or aggressive media and, as such, offer particularly low maintenance operation. The sensors are particularly suitable for measuring high conductivities, as no electrode polarisation occurs. The inductive conductivity sensors are operated using the Compact controller DCCa xx L6 ... The controller includes the testing and calibration kit (Order no. 1026958).


Conductivity sensor ICT 5

Cost-effective inductive conductivity sensor, suitable for high electrolytic conductivities above 200 µS/cm. Also suitable for chemically contaminated water and film-forming media. For installation in pipework

Your Benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- Complete with injection moulded PP sensor head, no apparent bonds, seals
- Measurements at high conductivity values of up to 2,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Simple installation in PVC pipework by bonding the DN 40 adhesive connector supplied into a standard T-piece and screwing in the sensor using the union nut supplied.
- A DN 40 welded connector is optionally available for use in PP pipework

Technical Data

Measuring range 0.2...2,000 mS/cm

Cell constant 6.25 cm⁻¹

Medium temperature -10...80 °C -10...60 °C for installation in PVC pipes, -10...80 °C for installation

lation in PP pipes

Max. pressure 10.0 bar at 20 °C, 6.0 bar at 60 °C, 0.0 bar at 80 °C

Min. pressure -0.1 bar (-10 ... 80 °C)

Sensor material PP
Seals EPDM

Electrical Connection 10 m fixed cable, 7x 0.35 mm² via a terminal

Enclosure rating IP 6

Typical applications Contaminated waste water, blowdown control in cooling towers, control of

electroplating and rinsing baths, cleaning in Place (CIP), product monitor-

ing, sea water, brine swimming pools.

Resistance to Ingredients in the water of the target application, taking into account com-

patibility to PP/EPDM, deposit-forming media

Process integration With union nut, PVC, 1 1/2 inch female thread, including DN 40 bonded

nozzle with 1 1/2 inch male thread for fitting in DN 40 PVC standard pipes (included in the scope of delivery). The corresponding set-in nozzle for

fitting in PP standard pipes is available as an accessory

Controllers Compact controller DCCa

Measuring principle, tech- Inductive, 2 coils. Integrated temperature measurement

nology

	Order no.	
ICT 5	1095248	

Conductivity Sensor ICT 5-IMA

Cost-effective inductive conductivity sensor, suitable for high electrolytic conductivities above 200 µS/ cm. Also suitable for chemically contaminated water and film-forming media. Completely integrated in an

Your Benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- Complete with injection moulded PP sensor head, no apparent bonds, seals
- Measurements at high conductivity values of up to 2,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Simple installation in tanks, containers etc. thanks to sensor ready mounted in the immersion tube

Technical Data

Measuring range 0.2...2,000 mS/cm

Cell constant 6.25 cm⁻¹

Measuring accuracy ±2% based on the measured value ±30 µS/cm Temperature sensor Pt 1000, wetted material Stainless steel 1.4301

Medium temperature -10...60 °C Max. pressure 0.0 bar

Min. pressure -0.1 bar (-10 ... 60 °C)

PΡ Sensor material PP Immersion pipe material

Sensor guard material SS 1.4301, AISI 304

Seals **EPDM**

Electrical Connection 10 m fixed cable, 7x 0.35 mm² via a terminal

Enclosure rating

Typical applications Contaminated waste water, blowdown control in cooling towers, control of

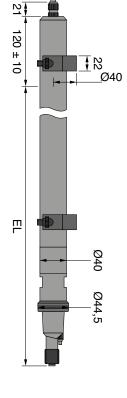
electroplating and rinsing baths, cleaning in Place (CIP), product monitor-

Order no

ing, sea water, brine swimming pools.

Ingredients in the water of the target application, taking into account com-Resistance to

patibility to PP/EPDM, deposit-forming media

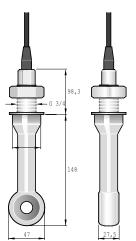

Process integration Immersion with immersion length 1 m

Controllers Compact controller DCCa

Measuring principle, tech-Inductive, 2 coils. Integrated temperature measurement

nology

	014011101
ICT 5-IMA	1095249


Conductivity Sensor ICT 2

High-performance inductive conductivity sensor with high dynamic measuring range. Also suitable for types of water with aggressive chemicals and film-forming components. Permitted temperatures up to 125 °C. For installation in pipework, tanks and for immersion in storage tanks

Your Benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- There is no need for adhesive or seals as the sensor is fully embedded in PFA
- Measurements at high conductivity values of up to 2,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Flexible connection to the processes is possible via a flange or immersion pipe with optional accessories

Technical Data

Enclosure rating

Resistance to

Measuring range 0.02...2,000 mS/cm

Cell constant 1.98 cm⁻¹

 \pm (5 μ S/cm + 0.5 % of measured value at T < 100 °C) Measuring accuracy

 \pm (10 μ S/cm + 0.5 % of measured value at T > 100 °C)

Temperature compensation Pt 100, class A, completely extrusion-coated

Medium temperature 0...125 °C, when used together with D1C, temperature compensation is

limited to 100 °C

Max. pressure 16.0 bar

Sensor material PFA, completely extrusion-coated 5 m fixed cable, 6x 0.35 mm² via a terminal **Electrical Connection**

Production processes in the chemical industry, phase separation of prod-Typical applications uct mixtures, determination of concentrations of aggressive chemicals.

Electrolytic conductivity of > 20 mS/cm, PFA-compatible aggressive chem-

icals (no concentrated lyes), deposit-forming media

Fitting in pipes, tanks (sideways): G 3/4 stainless steel thread (1.4571) or Process integration

flange fitting: With the accessories: Stainless steel flange ANSI 2 inch 300

lbs, SS 316L (adaptable to DIN counter flange DN 50 PN 16).

Controllers Compact controller DCCa

Measuring principle, tech-Inductive, 2 coils. Integrated temperature measurement

nology

Installation kit for type ICT 2 sensors →133

	Order no.
ICT 2	1022352

Sensor Technology DULCOTEST

Conductivity sensor ICT 8-mA

Inductive sensor for the measurement of electrolytic conductivity. Suitable for contaminated water. With integrated temperature correction and factory-calibrated 4...20 mA output signal.

Your Benefits

- Measured variable: electrolytic conductivity up to 200 mS/cm without polarisation effect
- The inductive (non-contact) measuring principle permits applications in water with solids content and in film-forming media
- Fail-safe 4-20 mA output signal for flexible connection to measuring equipment with standard 4...20 mA
- Integrated temperature correction replaces separate temperature sensor and sensor fitting

Technical Data

nology

Measuring range three configurable measuring ranges 0.2...2.0 mS/cm / 0.5...20 mS/cm / 1...200 mS/cm

Temperature correction integrated in the sensor electronics, temperature co-efficient: 1.7%/K max. 50 °C at 1 bar Medium temperature

PP Sensor material Seals **EPDM** Installation length 75 mm

Electrical Connection Fixed cable, 6-wire (6x0.25 mm²). The cable length is: 2 m cable between

the sensor and 4-20 mA cable transmitter and 10 m between the cable

transmitter and monitor.

Typical applications Desalination control in cooling towers, contaminated waste water, control

of electroplating and rinsing baths, salt water desalination, adjustment of

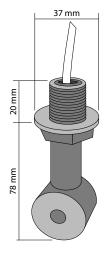
the salt content in swimming pool water

Resistance to Water ingredients in the target application, taking into account compatibility

to PP/EPDM and combating film-forming media 1/2" male thread (BSP) for mounting using flange,

Process integration installation in PVC pipes, DN 50 by means of installation adapter ICT8, DN

50, PVC, order no. 1106570,


immersion using immersion pipe, 1 m, order no. 1105964

Compatible controllers DAC, D1C, AEGIS II, AEGIS X, DULCOMARIN

Measuring principle, tech-Inductive, 2 coils. Integrated temperature measurement, integrated 4...20

mA transducer

Order no. ICT 8 -mA-200 mS/cm 1098530

1.5 Turbidity Measuring Points DULCOTEST

1.5.1 Turbidity Measuring Point DULCOTEST DULCO turb C

Reliable on-line measurement of turbidity with DULCOTEST DULCO turb C measuring points Measuring range 0 – 1,000 NTU

Turbidity measurements with DULCOTEST DULCO turb C: Compact measuring instrument that uses light scatter to measure turbidity, with a large measuring range and different designs to comply with ISO and EPA standards. Available with or without automatic cleaning.

The DULCOTEST measuring points for turbidity DULCO turb C with TUC 1, TUC 2, TUC 5, TUC 6 versions are compact, on-line turbidity measuring points consisting of a sensor, flow fitting and measuring instrument. The measuring instrument allows the measured value to be displayed, calibration, the measured value to be forwarded using a 4–20 mA signal and limit violations and equipment failure to be indicated. The measuring cuvette integrated in the measuring instrument allows the device to be operated in the process line bypass. The optical measuring equipment does not make contact with the measured medium.

The intended application is the treatment of potable water, in which DULCO turb C can be used in all treatment stages from raw water and filter monitoring to measurement of fine turbidity in dispensed potable water. Further applications include the monitoring of turbidity in slightly polluted process water, waste water as well as water requiring treatment from the food and beverage industry up to turbidity values of 1000 NTU. In contrast to the TUC 1/TUC 2 types, the measuring points TUC 5, TUC 6 are the successor models to types TUC 3 and TUC 4 and like these include an ultrasound-based self-cleaning function. This is particularly useful when used in film-forming waters to extend the maintenance intervals. The new measuring instruments are virtually identical to the old devices. The only differences are that they are operated using 5 keys rather than 4 keys and feature a USB connector with the associated software functions:

- Data capture and storage of 1 year's worth of measurement and calibration data. Up to 16 GB using USB drive
- Variable recording intervals of between 1 and 60 minutes, which can be selected by the user
- Downloading of data via a USB flash drive
- Software updates via USB flash drive
- 4-20 mA and RS-485 Modbus outputs at the same time

The measuring principle is similar to a scattered light measurement. The light beam radiated into the measuring cuvette filled with sample water is scattered on turbidity particles and the scattered light is measured at right angles (90°) to the radiated light (nephelometric measurement). The unit of measurement for turbidity can be given as a NTU (Nephelometric Turbidity Unit) or as an FNU (Formazin Nephelometric Unit). The measuring process in types TUC 1/TUC 5 (infrared light) corresponds to the global standard ISO 7027 and the European standard DIN EN 27027. The measuring process in types TUC 2/TUC 6 (white light) corresponds to the US standard USEPA 180.1.

Your benefits

- Compact turbidity measuring station with integrated sensor, flow cuvette and measuring instrument saves space and is simple to install and operate.
- High dynamic measuring range between 0.02 and 1,000 NTU permits broad-based use in all stages of potable water treatment. Also ideal for monitoring waste water from clarification plants and for monitoring ruptures with filters.
- Short response times thanks to small-volume measuring cuvette.
- Long-term stable measurements, even in contaminated water, by the optional ultrasonic cleaning of the measuring cuvette.
- Fast and simple calibration on site by optionally available, pre-assembled and time-stable calibration standards.

Technical Details

- The measuring process in types TUC 1/TUC 5 (infrared light) corresponds to the global standard ISO 7027 and the European standard DIN EN 27027.
- The measuring process in types TUC 2/TUC 6 (white light) corresponds to the US standard USEPA 180.1.

Field of application

- Potable water treatment, for all treatment steps: from raw water and filter monitoring to measuring fine turbidity in the potable water that is to be discharged
- Monitoring of turbidity in slightly polluted industrial water, waste water and water requiring treatment in the food and beverage industry up to a turbidity value of 1,000 NTU

1.5 Turbidity Measuring Points DULCOTEST

Technical Data

Measuring range a) TUC1, TUC4; factory calibrated: 0...1000 NTU, other measur-

ing ranges: 0...10 NTU and 0...100 NTU

b) TUC5, TUC6; factory-calibrated 0...100 NTU, other measuring

ranges: 0...10 NTU and 0...1000 NTU

Accuracy ± 2 % of the indicated value or ± 0.02 NTU below 40 NTU

depending on which value is greater \pm 5 % of the indicated value

above 40 NTU

Resolution 0.0001 NTU below 10 NTU

Response time Configurable

DisplayMultiple row LCD display with background lightingAlarm relayTwo programmable alarms, 120-240 VAC, 2 A Form C relayOutput signal4...20 mA, 600 Ω, electric isolation: dual insulation, interference

surge category II

Communication interface Bi-directional RS-485, Modbus Integrated pressure regulator regulates TUC1, TUC2: 1380 kPa (200 psi)

TUC 5, TUC6: 700 kPa (101,5 psi)

based on the flow rate

Flow 6...60 l/h Temperature 1...50 °C

Materials in Contact With the Medium Polyamide (PA), silicone, polypropylene (PP), Viton®, stainless

steel, borosilicate glass

Voltage supply 100 – 240 V AC, 47 – 63 Hz, 80 VA

Hydraulic connectionsBlack hose, inside 4.75 mm, outside 8 mm, installation in the

bypass for the process main line

Ambient conditions Not suitable for operation outdoors. Maximum operating altitude

2000 m above sea level. Maximum 95% relative air humidity

(non-condensing).

Standard Infrared light: ISO 7027, DIN EN 27027

Dimensions H x W x D 35 x 30 x 30 cm

Shipping weight 2.5 kg

	Standard	Ultrasonic cleaning	Order no.
TUC 1	Infrared light: ISO 7027, DIN EN 27027	No	1037696
TUC 2	White light: US EPA 180.1	No	1037695
TUC 5	Infrared light: ISO 7027, DIN EN 27027	Yes	1115440
TUC 6	White light: US EPA 180.1	Yes	1115441

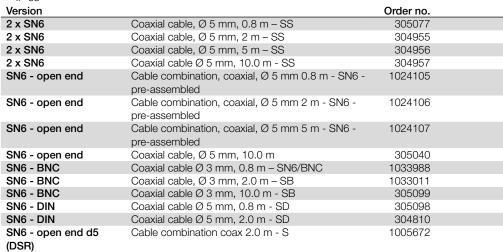
Spare Parts

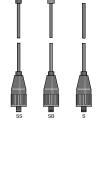
	Order no.
Drying agent	1037701
TUC 1/TUC 2 cuvette (set with 3 no.)	1037877
Cuvette TUC 3/TUC 4/TUC 5/TUC 6	1037878
Infrared lamp TUC 1/TUC 3/TUC 5	1037702
White light lamp TUC 2/TUC 4/TUC 6	1037703
Hose set TUC 1/TUC 2/TUC 3/TUC 4	1037879
Hose set for TUC 5 and TUC 6	1116180
Pressure regulating valve	1037885

Accessories

	Order no.
Calibration set	1037699
Flow control	1037880
Air bubble trap	1037700

1.6.1


Sensor Accessories


General information:

- Always keep measuring lines as short as possible
- Route measuring lines separately from parallel power lines.
- Use fully pre-assembled measuring line combinations wherever possible

Measuring Lines for pH and ORP Measurement

- Pre-assembled to facilitate installation
- Factory tested to ensure function reliability
- IP 65

Measuring Line for Sensors with VARIO Pin Plug-In Heads

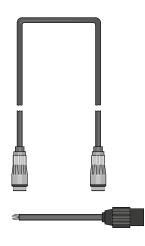
Pre-assembled 6-wire measuring line with VARIO Pin plug for connection to sensor type PHEPT 112 VE.

	Length	Order no.	
	m		
VARIO Pin signal lead VP 6-ST/ 2 m	2	1004694	
VARIO Pin signal lead VP 6-ST/ 2 m	5	1004695	
VARIO Pin signal lead VP 6-ST/ 2 m	10	1004696	

SN6 Coax Connector

K 74 crimping pliers and a soldering iron are required for connecting coax connectors to cables.

	Order no.
SN6 coaxial plug for 5 mm Ø coaxial signal lead	304974
SN6 coaxial plug for 3 mm Ø coaxial signal lead	304975


LK Coaxial Signal Cable

For pH and ORP measurements.

10.
'17
89
3

Please specify length when ordering.

Measuring Lines for 4P Type Chlorine Sensors

The measuring line is needed to connect ...-4P sensors with the measuring/control device D_4a.

- Simple installation, as no self-assembly is required
- High operational safety due to factory functional check
- IP 65

	Length	Order no.	
	m		
Measuring line for 4P type chlorine sensors	2	818455	
Measuring line for 4P type chlorine sensors	5	818456	
Measuring line for 4P type chlorine sensors	10	818470	

Measuring Lines for DMT Type Chlorine Sensors

The measuring line is needed for connection of DMT type sensors to the DMT transducer.

	Length	Order no.	
	m		
Universal cable, 5-pin round plug	2	1001300	
Universal cable, 5-pin round plug	5	1001301	
Universal cable, 5-pin round plug	10	1001302	

Cabling Accessories for CAN Type Chlorine Sensors

	Order no.
T-distributor M12 5 pole CAN	1022155
Termination resistor M12 coupling	1022154
Termination resistor M12 plug	1022592
Connecting cable - CAN M12 5-pole 0.5 m	1022137
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN, sold by the metre	1022160
Plug-CAN M12 5-pole screw terminal	1022156
Coupling-CAN M12 5-pole screw terminal	1022157

Measuring Lines for PER 2-3E-mA Type Peracetic Acid Sensors and PEROX H 3E-mA Type Hydrogen Peroxide Sensors

	Lead length	Order no.	
Measuring line (external cable), 2-core, 5-pin plug	2 m	707702	
Measuring line (external cable), 2-core, 5-pin plug	5 m	707703	
Measuring line (external cable), 2-core, 5-pin plug	10 m	707707	

Measuring Lines for Pt 100 and Pt 1000

Measuring line: 2-core, conductor: 0.5 mm².

	Length	Order no.	
	m		
SN6 - open-ended	5	1003208	
SN6 - open-ended	10	1003209	
SN6 - open-ended	20	1003210	

Measuring Line for Conductive Conductivity Sensors

4-core, conductor: 0.25 mm², cable diameter: 5.7 mm, screened

	Length	Order no.	
	m		
Measuring Line for Conductive Conductivity Sensors	1	1046024	
Measuring Line for Conductive Conductivity Sensors	3	1046025	
Measuring Line for Conductive Conductivity Sensors	5	1046026	
Measuring Line for Conductive Conductivity Sensors	10	1046027	

2-Wire Measuring Line

2-core, conductor: 0.25 mm², cable diameter: 4 mm

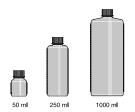
For amperometric sensors and transformers, each with 4-20 mA output.

	Order no.	
Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122	Ī

Connector Cable

For liquid potential equalisation on DGMa, DLG III, DLG IV with connector, 5 m long.

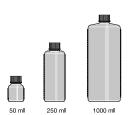
	Length	Order no.	
	m		
Connector cable	5	818438	


Test and Calibration Kit for Inductive Conductivity

	Order no.
Test and calibration kit	1026958

1.6.2

Consumable Items for Sensors


pH Quality Buffer Solutions

Accuracy \pm pH 0.02 (\pm 0.05 at pH 10). The shelf life depends upon frequency of use and the amount of chemical drag-in.

Alkaline buffer solutions can react with CO_2 if left open. This will affect their values, therefore close after use. Buffer solutions should be replaced a maximum of three months after opening. The solution contains a biocide to prevent bacteria forming.

	Capacity	Order no.	
	ml		
pH 4.0 buffer - red colour	50	506251	
pH 4.0 buffer - red colour	250	791436	
pH 4.0 buffer - red colour	1,000	506256	
pH 7.0 buffer - green colour	50	506253	
pH 7.0 buffer - green colour	250	791437	
pH 7.0 buffer - green colour	1,000	506258	
pH 9.0 buffer - colourless	50	506254	
pH 9.0 buffer - colourless	250	150693	
pH 9.0 buffer - colourless	1,000	506259	
pH 10.0 buffer - blue colour	50	506255	
pH 10.0 buffer - blue colour	250	791438	
pH 10.0 buffer - blue colour	1,000	506260	

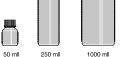
ORP Quality Buffer Solutions

Accuracy \pm 5 mV. Their shelf life depends on how often they are used and how strong the carry over of chemicals is.

Buffer solutions should be replaced a max. of 3 months after first opening.

Please note: The ORP buffer solution 465 mV is classified an as irritant (GHS07).

	Capacity	Order no.	
	ml		
ORP buffer 465 mV	30	1042307	
ORP buffer 465 mV	50	506240	
ORP buffer 465 mV	250	791439	
ORP buffer 465 mV	1,000	506241	
ORP buffer 220 mV	50	506244	
ORP buffer 220 mV	1,000	506245	


DPD reagents for calibration of amperometric sensors, see page \rightarrow 233

3 Molar KCI Solutions

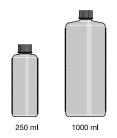
3-molar KCl solution is most suited to the storage of pH and ORP sensors (e.g. in sensor quills) and as an electrolyte for refillable sensors (e.g. PHEN, RHEN).

	Capacity	Oraer no.	
	ml		
KCI solution, 3 molar	50	505533	
KCl solution, 3 molar	250	791440	
KCI solution, 3 molar	1,000	791441	

Cleaning Solutions

Cleaning solution pepsin/hydrochloric acid:

For cleaning pH sensors whose diaphragms have been contaminated with protein.


	Capacity ml	Order no.	
Cleaning fluid Pepsin/hydrochloric acid	250 ml	791443	

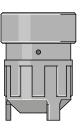
250 ml

Sensor Technology DULCOTEST

1.6 Accessories Sensor Technology

Conductivity Calibration Solution

For the precise calibration of conductivity sensors.


ml		
250	1027655	
1,000	1027656	
250	1027657	
1,000	1027658	
	250 1,000 250	250 1027655 1,000 1027656 250 1027657

Electrolyte for Amperometric Sensors

	Capac-	Order no.	
	ity		
	ml		
Electrolyte for CLE, CLR 1 type chlorine sensors	100	506270	
Electrolyte for CLO 1 type chlorine sensors	100	1035191	
Electrolyte for CLO 2 type chlorine sensors	100	1035480	
Electrolyte for CBR 1 type chlorine, bromine sensors	100	1038017	
Electrolyte for CGE, CTE 1, BRE sensor types	50	792892	
Electrolyte for BCR 1 type bromine sensors	50	1044843	
Electrolyte for CDM 1, CDE 3 type chlorine dioxide sensors	100	506271	
Electrolyte for CDE 2 and CDR 1 type chlorine dioxide sensors	100	506272	
Electrolyte for CDP 1 type chlorine dioxide sensors	100	1002712	
Electrolyte for OZE 3 type ozone sensors	100	506273	
Electrolyte for CLT 1 type chlorite sensors	50	1022015	
Electrolyte for PAA 1, OZR 1 type peracetic acid, ozone sensors	100	1023896	
Electrolyte for PAA 2 type peracetic acid sensors	50	1120350	
Electrolyte for PER 1 type hydrogen peroxide sensors	50	1025774	
Electrolyte for PEROX H 3E type hydrogen peroxide sensors	100	1121673	

Spare Membrane Caps, Accessory Sets for Amperometric Sensors

	Capacity ml	Order no.	
Membrane cap for types CLE II T, CDM 1 and OZE 1	-	790486	
Diaphragm cap for types: CLE 2.2, CLE 3, CLE 3.1, CDE 1.2, CDE 2, OZE 2 and OZE 3	-	790488	
Sensor cap for CLO 1	-	1035197	
Sensor cap for CLO 2	-	1035198	
Diaphragm cap for CGE 3, CGE 2, CTE 1 (2/5/10 ppm), BRE 1 (10 ppm), BRE 2, PEROX H-3E (50/200/500), PAA 2-3E	-	792862	
Diaphragm cap for CTE 1 (0.5 ppm), CBR 1, BCR 1, PER-OX H-3E (10 ppm)	-	741274	
Membrane cap for CDP 1, BRE 1 (0.5 / 2 ppm), CLT	-	1002710	
Membrane cap for CDE 3	-	1026578	
Diaphragm cap for PAA 1, CDR 1, CLR 1, OZR 1	-	1023895	
Membrane cap for PER 1	-	1025776	
Membrane cap for H2.10 P	-	792978	
Accessory set for CGE 3, CGE 2, CTE 1 (2/5/10 ppm) and BRE 1 (10 ppm), BRE 2 (2 diaphragm caps + electrolyte)	50	740048	
Accessory set for CTE 1 (0.5 ppm) (2 membrane caps + electrolyte)	50	741277	
Accessory set for CLE 3, CLE 3.1 (2 diaphragm caps + electrolyte)	100	1024611	
Accessory set CDP 1 (2 diaphragm caps + electrolyte)	100	1002744	
Accessory set for PAA 1 and OZR 1 (2 diaphragm caps + electrolyte)	100	1024022	
Accessory kit for PER 1 (2 membrane cap + electrolyte)	50	1025881	
Accessory set for CDE 3 (2 membrane caps + electrolyte)	100	1026361	
Accessory set for CLO 1 (electrolyte, grinding disc, plug)	100	1035482	
Accessory set for CLO 2 (electrolyte, grinding disc, plug)	100	1035483	
Accessory set for CBR 1 (2 membrane caps + electrolyte)	100	1038984	
Accessory set BCR 1 (2 membrane caps + electrolyte)	50	1044844	
Accessory set for CLE 3, CLE 3.1 (2 diaphragm caps + electrolyte)	50	1022100	
Accessory set for PEROX H-3E-10ppm (2 diaphragm caps + electrolyte)	100	1121674	
Accessory set for PEROX H-3E-50/200/500ppm (2 dia- phragm caps + electrolyte)	100	1121675	

Spare Parts for Dissolved Oxygen Sensors

	Order no.
Sensor cap for type DO 3-mA-20 ppm	1096350
Protective cap for type DO 3-mA-20 ppm	1096352

1.6.3

Sensor Bypass Armature Modular BAMa

Modular sensor bypass armature BAMa: flexible process connection for all ProMinent sensors for water treatment

Up to 9 functional modules can be freely configured in a single fitting.

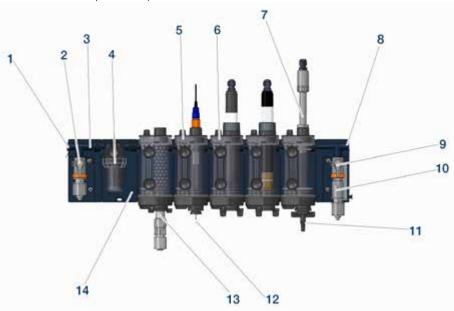
The modular bypass armature BAMa accommodates ProMinent sensors for water treatment. The armature is simply installed in a bypass of the main process line. It is available in various variants, each perfectly designed for special water treatment applications – from drinking water, water for pool & wellness to industrial water.

Depending on the application, the modular bypass armature can be selected in different variants:

For saving sample water: This variant of the BAMa allows all flow-dependent sensors in the 5...25 l/h range to be operated for clear water. This is very beneficial for applications, where sample water cannot or must not be returned to the process, e.g. drinking water monitoring or product water during the manufacture of beverages.

For process water which is clear or has low levels of solids where the sample water is returned to the process: This design can be operated between 20...60 I/h as a result of which self-cleaning of armatures and sensors is improved. Typical applications include water treatment processes in the pool & wellness sector.

For process water which has moderate levels of solids and / or for higher temperatures and / or pressure requirements: This BAMa configuration is designed for operation with flows of 20...100 l/h and is ideally suited for many applications, e.g. in industrial water treatment.


The modular bypass armature BAMa and its various components can be perfectly combined for individual sample water conditioning. Additionally, a flow controller can be installed as well as can components for taking and treating sample water, such as a filter, flow limiter, metering module, ventilation, potential equalisation and earthing. For amperometric sensors without diaphragm, an integrated hydrodynamic cleaning unit can be ordered.

Your Benefits

- The sensors can be quickly and easily fitted and dismantled thanks to bayonet fittings.
- All parts requiring maintenance can be cleaned very well as they are easy to access without tools.
- Water consumption is minimised to just 5 l/h for flow-dependent sensors under ideal measurement conditions.
- The good particle mobility allows the bypass armature to be used in an even wider range of applications.
- Construction and material permit temperatures of up to 70 °C at a max. pressure of 3 bar, making it even more flexible to use.
- Thanks to higher pressure levels of up to 7 bar at 20 °C, sample water can return to the process, where permitted.
- The BAMa provides numerous options for setting optimum measurement conditions.

Can be ordered using identity code as an option

- Space-saving filter module, fully integrated in the fitting: Length: 65 mm / diameter 28 mm, filter bowl made from PET copolymer, filter insert made from stainless steel 1.4404, 300 µm pore diameter
- The module with float flow control using a reed switch is available in the following designs for use in clear process water: "BAMA_1..." and "BAMA_2...". Wetted materials: PVC, FKM
- The module with thermal flow control is available in the design "BAMA_ 3..." and permits operation in media containing solids and at higher pressure levels / temperatures. Wetted material: Stainless steel 1.4404
- The flow limiter for eliminating peaks in flow as hydraulic conditions change over time is always fitted in conjunction with the filter module and is only available in the designs "BAMA_1…": Limitation to max. 12 l/h and "BAMA_2…": Limitation to max.54 l/h
- Metering module including injection valve and mixing zone, for metering of chemicals in the sample water flow for the purpose of treating sample water (e.g. adjusting pH or electrolytic conductivity). Sensors, which are not suitable for untreated sample water, can therefore be used. The metering module can also be used to chemically clean the fitting. A suitable metering pump, accessories and the appropriate treatment medium must be ordered separately.
- Hydrodynamic cleaning of the open chlorine sensors without protective diaphragm, types CLO1 / CLO2, is integrated in the sensor module
- Potential equalisation on the sensor module and also an electric earthing connector on the input module ensure faultless operation of pH and ORP sensors in the event of electrical influence

- 1 Earthing connector
- 2 Hydraulic inlet with shut-off valve, horizontal or vertical connector (inlet), factory-fitted as vertical, but may be converted by the operator to horizontal
- 3 Direction of flow/arrow
- 4 Particle filter, 300 micrometre (optional)
- **5** Sensor modules for pH and ORP sensors (PG 13.5 connector)
- **6** Sensor modules for amperometric sensors (G1" connector)
- 7 Flow meter / control by means of float and reed switch or thermal flow sensor

- 8 G 1/4 connector for venting
- 9 Hydraulic outlet with shut-off valve, horizontal or vertical connector (outlet), factory-fitted as vertical, but may be converted by the operator to horizontal
- 10 Flow limiter
- 11 Sample valve
- 12 Potential equalisation connector
- 13 Injection valve with mixing device
- 14 Module carrier

Technical Data

Flow through the sensor bypass armature Modular BAMa

Application	"BAMa 1…" e.g. drinking water	"BAMA_ 2" e.g. pool&well- ness sector	"BAMa 3" industrial water
Flow	525 l/h	2060 l/h	20100l/h

Operating pressure / operating temperature / particle mobility

BAMa design Pressure / temperature	"BAMA_ 1" at max. 25 l/h	"BAMA_ 2" at max. 60 l/h	"BAMA_ 3" at max. 100 l/h
Minimum priming pressure without flow limiter and with clean filter for a total of 9 modules	0.025 bar	0.050 bar	0.500 bar
Minimum priming pressure with flow limiter and with clean filter for a total of 9 modules	1.5 bar	1.5 bar	2.0 bar
Maximum operating pressure *	7.0 bar at 20 °C	7.0 bar at 20 °C	7.0 bar at 20 °C
Maximum operating temperature *	60 °C at 3.5 bar	60 °C at 3.5 bar	70°C at 3.0 bar
Particle mobility (specified with non-ag- glomerating, non-sedimentary model particles)	< 300 μm	< 300 μm	< 1000 μm

^{*} Maximum operating pressure and maximum operating temperature are limited by the specification of the weakest component fitted.

- Because the flow limiter may only be used in clear water, it is only available as standard for the "BAMA_1…" applications (e.g. potable water, limitation to 12 l/h, order no. 1113408) and "BAMA_2…" (e.g. pool&wellness sector, limitation to 54 l/h, order no. 1112443) applications together with the filter module. Blockages are thereby avoided. The flow limiter is installed on the hydraulic outlet ex factory.
- When using sensors with a maximum operating pressure of ≤ 1.0 bar, the flow limiter can be ordered as an accessory and installed on site at the hydraulic inlet module, provided that the system is handling filtered, clean sample water with no solids content with a particle size < 300 µm. Due to the pressure drop of 1.4 bar at the outlet of the pressure limiter, the permitted operating pressure at the inlet of the sensor bypass armature Modular BAMa is increased to max. 2.4 bar for pressure-sensitive sensors.</p>
- Because of the continuous configuration, an additional priming pressure of 0.5 bar is to be expected when using a filter and this must be added to the minimum priming pressure values stated above.

Wetted materials

Measurement module, flow module, metering module, flow element of filter housing	SAN, transparent
Module carrier, hydraulic inlet / outlet	PPE+PS+GF10%
Sensor adapter; flow element bracket	PPE+PS+GF30%
Filter insert	Stainless steel 1.4404
Filter bowl	PET copolymer
Ball funnel, flow nozzle	PVDF
O-rings, seals	FKM
Thermal flow sensor	Stainless steel, 1.4404
Calibration beaker	PE
Shut-off valve, sample drain valve	a) PVC in applications BAMA _1
	(e.g. drinking water) and
	BAMA_2 (e.g. pool & wellness sector)
	b) PVDF in the application
	BAMA _ 3 (e.g. industrial water
Flow sensor with float	PVC
Thermal flow sensor	Stainless steel 1.4404
Flow limiter	PVC
Potential equalisation pin	Stainless steel 1.4404
Cleaning balls, balls in the metering module	Glass

Hydraulic connectors

Hose 8x5 and 12x6 mm Hose 1/2x3/8 and 3/8x1/4 inch Pipe DN10 horizontal

Pipe 1/2 inch MPT horizontal

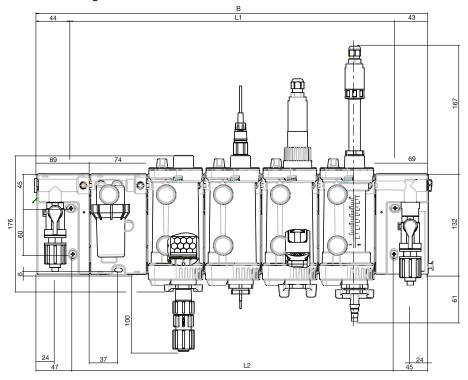
Float flow meter

Flow range for BAMA_1 application (e.g. drinking 5...25 l/h Flow range for BAMA_2 application (e.g. pool & well-20...60l/h ness sector) 2 bar Max. operating pressure 30 °C Max. operating temperature Output signal Switching signal Max. switching power 3W Max. switching voltage 42 V 0.25 A Max. switching current Max. constant current 1.2 A Max. contact resistance 150 mOhm Degree of protection of the reed switch IP 65 Wetted materials PVC, FKM

Thermal flow meter

Flow range 20...100 l/h Accuracy at the switching point 30 l/h Better than +-10% Output signal Switching signal; analogue signal; frequency signal; IO link; Electrical design PNP, NPN Max. load 300 Ohm Continuous current load of the switching output 200 mA DC Max. voltage drop at switching output 2.5 V DC Degree of protection IP65 Wetted materials Stainless steel, 1.4404

Flow limiter


Minimum pressure drop	1.4 bar
Maximum pressure drop	10 bar
Flow limitation for BAMA_1 application (e.g. drinking water)	max. 12 l/h
Flow limitation for BAMA_2 application (e.g. pool & wellness sector)	max. 54 l/h
Application	Can only be used for filtered water < 300 µm

Ambient conditions

Ambient temperature	-1060 °C
Storage temperature	1070°C
Vibration	Complies with IEC 68, Part 2-6
EMC	In accordance with the data for the electrical components
UV	Not long-term stable in direct sunlight when used outdoors
Air humidity	when using flow sensors and other electrical components: max: 90%, non-condensing

Dimensions / weights

BAMa design example: BAMa_EU_1_2_1_1_X_D_D_C_1_X_00_01_00_DE (with float flow control, e.g. for drinking water)

Number of mod- ules	1	2	3	4	5	6	7	8	9
Width b (mm)	213	288	362	437	511	586	660	735	809
Weight (g) ex-	547	842	1137	1432	1727	2022	2317	2612	2907

BAMa module	Weight (g)
Hydraulic inlet	124
Hydraulic outlet	128
Module carrier	120
Measuring module	175
Flow module	230
Filter	75
Lip valve	44
Hose connector kit	35

1.6.4 Identity Code Ordering System for Sensor Bypass Armature BAMa Regional design FU Europe (Standard) North America US 5 ... 25 l/h, max. 60 °C at 3.5 bar (e.g. drinking water or water similar to clear water with sample water consumption saving) 20 ... 60 l/h, max. 60 °C at 3.5 bar (e.g. pool & wellness sector or similarly treated water with sample water return) 2 3 20 ... 100 l/h, max. 70 °C at 3.0 bar (e.g. industrial water or similar with a solids content and higher temperature requirements) Flow monitor module none, (For application 3 only) Float + scale [l/h], [gph] Float + scale + reed switch (max. 2 bar) Thermal flow monitorig, (For application 3 only) Number of modules, PG13.5 (sensors for pH, ORP, conductivity: LF(T) line, fluoride FLEP, hydrogen peroxide H2.10P, temperature PT100, PT1000) No module One module + sensor adapter PG 13.5 Two modules + sensor adapter PG 13.5 3 Three modules + sensor adapter PG 13.5 Four modules + sensor adapter PG 13.5 Number of modules, G 1" (amperometric sensors, conductivity sensors CCT1, CTFS via adapter G 1" - 3/4" NPT (1113353), sensor for dissolved oxygen DO3) No module One module + sensor adapter G 1" Two modules + sensor adapter G 1" Three modules + sensor adapter G 1" Four modules + sensor adapter G 1" Five modules + sensor adapter G 1" Number of modules, G 3/4" (conductivity sensors LM(P) line) none One module + sensor adapter G 3/4" Metering module None D With metering module none With filter, 300 µm, stainless steel lъ With filter and flow limiter, (For applications 1 and 2 only) Sensor cleaning None Hydrodynamic cleaning for CLO 1/2 type chlorine sensor, (For applications 2 and 3 only) Hydraulic connections Hose 8x5 and 12x6 mm, (EU region only) Hose, 1/2" x 3/8" and 3/8" x 1/4", (US region only) Pipe, DN 10, horizontal, (EU region only) Pipe, 1/4" MNPT, horizontal, (US region only) Status illuminated indicator none 00 | with ProMinent® logo 01 Without ProMinent logo 00 none 01 Potential plug + electrical earthing Approvals 00 none 01 CE, (Only needed with accessories 01) CF + UKCA. (Only needed with accessories 01) 14 Documentation language DE German EN English FR French FS Spanish

Retrofit kits

Order no.	
1113795	
1113798	
1113881	
1113424	
	1113795 1113798 1113881

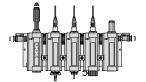
Accessories

Reed switch PVC, for flow module 1118867 Thermal flow control (SA 4300) 1122791 Potential equalisation / earthing, complete 1113409	
,	
Potential equalisation / earthing, complete 1113409	
Sample valve for PG 13.5 module 1004737	
Flow limiter, 12 litres, complete, f/f PVC 1117504	
Flow limiter, 54 litres, complete, f/f PVC 1117493	
Hydraulic short circuit, complete 1117462	
Vent valve (lip valve) G 1/4 - 6x4, PVC 1113427	

Consumable Items

	Order no.
Filter insert, 300 µm, stainless steel	1105632
Cleaning balls (approx. 100)	1104267
Glass balls for metering module	1122617

1.6.5 Sensor Bypass Fitting Type DGMa


Being discontinued! Available until September 2023. Is being replaced by the sensor bypass armature Modular BAMa.

To hold conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread or amperometric sensors with R 1" screw-in thread.

Benefits:

- Simple installation (completely ready mounted on a panel); max. 7 modules on a panel
- Simple retrofit upgrade option (see upgrade modules)
- Module for sample water flow control
- Quick measurement recording due to low volume of sample water
- Each completely assembled DGMa is equipped with a simple sample valve

Ball valves on both sides for shutting off the flow and for flow adjustment

Material All modules: PVC transparent

Seals: FKM

Calibration cup: PP Mounting plate: PVC white

60 °C

Max. pressure 6.0 bar (30 °C), 1.0 bar (at 60 °C)

Pressure max. at temperature 30 °C

Pressure max. at temperature 60 °C

Max. temperature

02

Max. flow rate80 l/hRecommended Flow volume40 l/hFlow sensorReed so

Reed switch

Max. switching power 3 W max. switching voltage 42 V max. switching current 0.25 A max. constant current 1.2 A max. contact resistance 150 m Ω

Switching hysteresis 20 % Enclosure rating IP 65

Typical applications Potable water, swimming pool water or water of similar quality with no

uspended solids

Assembly Max. 5 modules pre-assembled onto baseboard: more than 5 modules,

pre-ssembled onto baseboard as custom version, priced accordingly.

Identity Code Ordering System For In-Line Probe Housing Modules

DGMa	Flow moni	nitor module						
	1	with I/h s	with I/h scale					
	2	with gph	n gph scale (US)					
	3	With flov	w monitor,	I/h scale	е			
	4	with flow	v monitor,	gph sca	de (U	S)		
		Number	r of PG 13.5 modules					
		0	without PG 13.5 modules					
		1	one PG	one PG 13.5 module				
		2	two PG					
		3	three PG					
		4	four PG					
			Number					
			0	No 25				
			1	1 One 25 mm module				
			2	Two 25 mm modules				
				Main material				
				T Transparent PVC				
				Material of seals/diaphragm				
				0 FKM A				
				Hydraulic connections				
				0 8 x 5 hose				
						1	PVC DN 10 threaded connector	
				4 Hose 12 x 6				
				9 Connecting nipple / expansion module				
					Version			
							0 with ProMinent logo	
							1 without ProMinent logo	
					2 With ProMinent® logo, without mounting plate			
					3 Without ProMinent® logo, without mounting plate			

Scope of delivery

- Wall mountings
- Calibration cup for PG 13.5 modules
- Mounting kits for sensors for every ordered PG 13.5 module and 25 mm module
- 2 x hose connectors, 8x5 mm

The identity code DGM A 3 2 1 T 0 0 0 describes, for example, a fully assembled configuration of a flow module with sensor, two PG 13.5 modules (e.g. for pH and ORP sensors) and a 25 mm module (e.g. for CLE 3 chlorine sensor) 8×5 hose connectors are ready mounted.

Recommended Accessories

	Order no.
Plug for potential equalisation	791663
Flow sensor for flow upgrade modules	791635
Calibration cup	791229
Sample valve for PG 13.5 module	1004737
Sample valve for 25 mm module	1004739

- Max. 7 modules possible on a mounting plate
- More on request

Extension Modules for DGMa

For simple upgrade of an existing DGMa at a later date.

	Order no.
Flow expansion module with scale in I/h	1023923
Flow expansion module with scale in gph	1023973
Flow sensor for flow upgrade modules	791635
Expansion module for PG 13.5 sensors	1023975
Expansion module for 25 mm sensors	1023976

Connector Cable

For liquid potential equalisation on DGMa, DLG III, DLG IV with connector, 5 m long.

	Order no.
Connector cable	818438

Shut-off Ball Valve for DGMa

To isolate the bypass from the process flow

	Order no.
Stopcock	1010380

Mounting Kit Sensor, DGMa

For fitting amperometric sensors with R 1" connection

	Order no.
Mounting kit, sensor/DGMa	791818

Sample Valve for DGMa

For PG 13.5 and 25 mm modules designed as a convenient ball valve.

	Order no.
Sample valve for PG 13.5 module	1004737
Sample valve for 25 mm module	1004739

roMinen

1.6 Accessories Sensor Technology

1.6.6

In-line Probe Housing for Sensors

DLG III Type In-Line Probe Housing

To hold 2 sensors (conductivity, Pt 100, pH or ORP sensors) with PG 13.5 screw-in thread plus one sensor with R 1" screw-in thread (amperometric sensors) with integrated stainless steel pin as liquid reference potential.

On the inlet side the DLG III is equipped with a plastic ball valve for blocking and adjusting the sample water flow.

Material In-line probe housing: PVC hard

Clear cup: Polyamide Ball valve: PVC hard

Typical applications Cooling water, slightly contaminated waste water, turbid water, no sludge.

	Version	Max. tempera- ture °C	Order no.	
DLG III A with PVC hose con- nectors	for PE line Ø 8/5 mm	55	914955	
DLG III A with flushing connector and PVC hose connection	for PE line Ø 8/5 mm	55	1029096	
DLG III B with PVC adhesive connectors	for pipe connection Ø 16 DN 10	55	914956	
Assembly kit for fitting amperometric sensors		55	815079	

DLG IV Type In-Line Probe Housing

To hold 4 sensors (pH, ORP, Pt 100, conductivity) with PG 13.5 screw-in thread. With integrated stainless steel rod as liquid reference potential. Angle for wall mounting.

Material In-line probe housing: PVC hard or PP

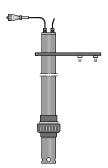
Clear cup: Polyamide

Max. pressure 1.0 bar

Connection for sample water Union with d 16/DN 10 insert

line

	Version	Max. temperature °C	Order no.	
DLG IV PP	for Ø 16/DN 10 pipe work connector	80	1005331	
DLG IV PVC	for Ø 16/DN 10 pipe work connector	55	1005332	


DLG Sampling Water Cup

Order no.	
1029095	
	3.33.1.3

Sensor Technology DULCOTEST

1.6.7

Immersion Fittings for Sensors

PVC Immersion Assembly Type ETS 1 P

Immersion fitting to hold **one** conductivity, Pt 100, pH or ORP sensor with SN6 plug-in head and PG 13.5 screw-in thread. In addition, a stainless steel rod is integrated as a liquid reference potential.

Sensor connector (inner) SN6 connector

Signal lead connector (outer) Coax SN6 male connector

Material Rigid PVC

Type of fitting Clamping flange with mounting plate

Immersion depthVariableMax. temperature55 °C

	Order no.	
ETS 1 P	914950	

PP Immersion Assembly Type IPHa 1-PP

Immersion fitting for holding **one** sensor (e.g. pH, ORP) with PG 13.5 screw-in thread and standard 120 mm length. The inside diameter is sized so that either pH or ORP transducers can be installed. In addition, a stainless steel rod is integrated as a liquid reference potential. The outside diameter is 40 mm. Immersion depths of 1 and 2 m are offered, however customers can independently lengthen or shorten the immersion pipe. The fitting head contains two cable connectors; measuring lines of 3-7 mm diameter can be led out.

Note: Measuring lines are not included in the scope of delivery.

MaterialFitting: PPSeals: FKMMax. temperature80 °C

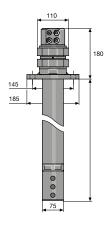
Pressure Installation at atmospheric pressure

Immersion depth Max. 1, or 2 m; variable

Immersion lance diameter 40 mm

Dimensions Table: Flange

	Installation length	Order no.	
	m		
IPHa 1-PP	1	1008600	
IPHa 1-PP	2	1008601	


Other materials available on request.

FKM = Fluorine Rubber

Accessories for Fitting Type IPHa 1

	Order no.	
Immersion pipe mounting for IPHa 1-PP	1008624	
Clamped threaded connector with fixed flange DN 40 according to DIN 2642 for IPHa 1-PP	1008626	
Clamped threaded connector for welding connection for IPHa 1-PP	1008628	
Protective (weatherproofed) cover for assembly head for IPHa 1-PP	1008630	
Water-retaining basin for IPHa 1-PP	1008632	

PP Immersion Assembly Type IPHa 3 -PP

To hold max. three sensors (e.g. pH, ORP, temperature) with PG 13.5 screw-in thread and standard 120 mm length. The inside diameter is dimensioned so that up to three pH, ORP or temperature transducers can be installed. In addition, a stainless steel rod is integrated as a liquid reference potential. The outside diameter is 75 mm. Immersion depths of 1 and 2 m are offered, however customers can shorten the immersion pipe themselves. The fitting head contains four cable connectors; measuring lines of 3-7 mm diameter can be led out. Measuring lines are not included in the scope of delivery. Technical data as for fitting IPHa 1, except the immersion tube diameter is 75 mm.

Material Fitting: PP Seals: FKM

80 °C Max. temperature

Installation at atmospheric pressure Pressure

Immersion depth Max. 1, or 2 m; variable

Immersion lance diameter 75 mm

Dimensions Table: Flange

Fixed flange DN 65 Hole circle Ø K 145 mm Screws 4 x M16 Thickness d_a 18 mm Diameter Ø D 185 mm

	Installation length	Order no.	
	m		
IPHa 3-PP	1	1008602	
IPHa 3-PP	2	1008603	

Other materials available on request.

FKM = Fluorine Rubber

Accessories for Fitting Type IPHa 3

	Order no.	
Immersion pipe mounting for IPHa 3-PP	1008625	
Clamped threaded connector with fixed flange DN 65 according to DIN 2642 for IPHa 3-PP	1008627	
Clamped threaded connector for welding connection for IPHa 3-PP	1008629	
Protective (weatherproofed) cover for assembly head for IPHa 3-PP	1008631	
Water-retaining basin for IPHa 3-PP	1008633	

Accessories Sensor Technology 1.6

Weatherproof Cover for In-line Probe Fitting Type IMA-ICT 1

For use of immersion fitting IMA- ICT 1.

	Order no.	
Weatherproof cover PP	1023368	

Immersion Assembly Type IMA-ICT 2

To hold one inductive conductivity sensor of type ICT 2.

Fitting: Stainless steel 1.4404 Material

125 °C 10 bar 1 m Immersion lance diameter 70 mm

Flange Stainless steel flange DN 80 PN 16

Seal: FKM Max. temperature Max. pressure Installation length

Dimensions Table: Flange

Flange DN 80/PN 16 ØD 200 mm ØΚ 160 mm Ød, 8 x 18 mm b 20 mm Øа 63.5 mm M 16 Screws

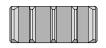
Order no. IMA-ICT 2 1023353

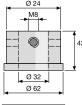
Adaptation to processes through flange installation in tank from top.

Sensor Technology DULCOTEST

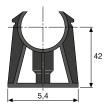
1.6 Accessories Sensor Technology

PG 7 SW 38

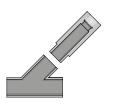

Immersion Assembly Type TA-LM


To hold **one** conductivity sensor of type LM and LMP with M 28 thread for side fasting with pipe clips (2 contained in the scope of supply) or with union nut/collar bush/screw-in part for fastening in a tank cover.

Union nut and screw-in part are to supplied by the customer (standard parts).


MaterialPPMax. temperature70 °CEnclosure ratingIP 65Max. pressure5.0 barImmersion lance diameter32 mmPipe length890 mm

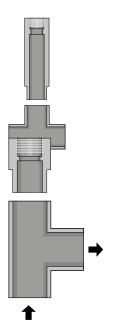
	Length	Order no.	
	mm		
TA-LM	890	1020632	
Headed bush d50	-	1020634	
Extension tube 1000	910	1020633	



1.6.8

Installation Fittings / Adapters

Adapter Set (T-piece and Adapter)


For direct installation of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in pipework:

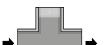
	Material	Order no.	
90° T-piece DN 20	PVC	1001493	
90° T-joint DN 25	PVC	1001494	
45° T-piece DN 20	PVC	1001491	
45° T-piece DN 25	PVC	1001492	

PVC Adapter Set for Type LM ... Sensors

For direct fitting of type LM conductivity sensors with 3/4" screw-in thread for measuring in the flow.

For LM(P) 001 conductivity sensors

The sensors are fitted in the straight section of the T-piece.

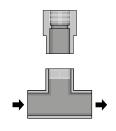

90° T-joint DN 25	PVC	356410	
Adapter DN 25 with 3/ 4" thread	PVC	356923	
90° T-joint DN 25	PP	358674	
Adapter with 3/4" thread	PP	356953	

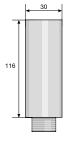
Material

Material

Order no.

Order no




For LM(P) 01 Conductivity Sensors

The sensors are fitted in the outlet of the T-piece.

	Matorial	Gradi noi	
90° T-piece DN 20 – 3/4"	PVC	356455	
90° T-piece DN 20 - 3/4"	PP	356471	

For LM(P) 1 Conductivity Sensors

The sensors are fitted in the outlet of the T-piece.

PVC	1020616	
PVC	356410	
		1.00 1020010

Material

Order no.

Adapter PP, PG 13.5

For direct installation of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread in, for example, pipework, tanks:

Max. temp: 80 °C (at atmospheric pressure)

EPDM sealing ring

	Material	Outer thread	Order no.	
Adapter DN 20	PP	R 1/2"	1001834	
Adapter DN 25	PP	R 3/4"	1001835	

Adapter, Stainless Steel, PG 13.5

For direct installation of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread in, for example, pipework, tanks:

Max. temp: 180 °C (at atmospheric pressure)

FKM (fluorine rubber) sealing ring

	Material	Outer thread	Order no.	
Adapter DN 20	SS	R 1/2"	1020737	
Adapter DN 25	SS	R 3/4"	1020738	

Installation Kit for Type ICT 2 Sensors

For direct fitting of the inductive conductivity sensor ICT 2 in pipework and tanks.

	Order no.
Installation kit for type ICT 2 sensors	1023364

Kit consisting of

- stainless steel flange ANSI 2 inch 300 lbs, SS 316L (adaptable to DIN counter flange DN 50 PN 16)
- Nut 3/4" stainless steel

Parts that come into contact with the medium:

- Sealing disk, "2", / PTFE
- Spacer ring, PTFE
- Seal

DN 50

125

M 16

18

165

M 16

22.2

165.1

Set-in Nozzle for T-piece (PP), Sensor Type ICT 1

For connection of the inductive conductivity sensor ICT 1 in PP T-piece.

	Older IIO.	
Set-in nozzle external thread 2 1/4" DN 40 including FKM O-ring	1023371	

T-piece Adapter (PP) for Sensor Type ICT 5

For installation of the inductive conductivity sensor ICT 5 in PP pipework.

	Order no.	
T-piece, PP, 1 1/2" external thread - DN 40 including EPDM O-ring	1096349	

Fixed flange

SS 316L

Hole circle

Thickness

Diameter

Screws

Solvent Threaded Union (PVC) for Sensor Type ICT 5

For installation of the inductive conductivity sensor ICT 5 in PVC pipework.

	Order no.	
Solvent threaded union, PVC, 1 1/2" external thread DN40 incl. O-ring	1096348	

Installation Adapter for Sensor ICT 8 in PVC Pipes

For installation of the inductive conductivity sensor ICT 8 in PVC pipework DN 50.

	Order no.
Installation adapter, PVC, DN 50 complete	1106570

Retractable Sensor Housing for pH, ORP Sensors WA-PH 1

To hold **one** pH sensor with PG 13.5 screw-in thread and length of between 110-125 mm for fitting in the storage tank or in the flow. The sensor can be removed and fitted for calibration and cleaning without draining the liquid from the storage tank or without interrupting the process in the flow.

Material	PP
Max. temperature	70 °C
Max. pressure	5.0 bar
Thread	3/4"

	Order no.
WA-PH 1	1020631

80

Ø 40

Installation Fitting INLI for Chlorine Sensor CLO

The installation valve permits the installation of the sensor for free chlorine types CLO (part no. 1033870, 1033871, 1033878) and the sensor for conductivity type CCT 1-mA (order no. 1081545) for operation in the process line (G 1") or in the bypass to the process line. Use either with a free outlet or return of the sample water to the process line. Sample water temperature up to 70 °C/2 bar and 40 °C/7 bar. Keep the flow constant.

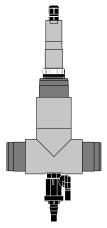
Max. temperature	70 °C (at 2 bar)
Max. pressure	7 bar (at 40 °C)
Flow for operation of the sensor	400 - 800 l/h

CLO

MaterialT-piece and fittingsPPO-ringEPDM

Sample valve PVDF/FPM Stopcock PVDF/FPM

Reducer Stainless steel 1.4571


Connectors

SensorG 1"Sample valveG 1/4"Hose on sample valve6 x 4 mmSample water lineG 1"

	Older 110:
Installation fitting for chlorine sensor CLO	1047238

Accessories

	Order no.
Stopcock	1048213

Spare Parts

	Order no.
Sampling cock	1047266

Adapter for the Dissolved Oxygen Sensor Type DO 3-mA-20 ppm

The adapter, DN 32, PVC, is a spare part for the dissolved oxygen sensor type DO 3-mA-20 ppm. One side of the adapter has an Rp1" thread for connecting the sensor. The other side of the adapter has a glued connector for connecting to a standard PVC pipe, DN 32 (supplied by the customer) via a 45° angle (order no. 356335).

	Order no.
Reduction nipple, PVC-U, metric RP1"	356924

45° Bracket for the Dissolved Oxygen Sensor Type DO 3-mA-20 ppm

The 45° angle, d 40-DN 32, PVC, is a spare part for the dissolved oxygen sensor type DO 3-mA-20 ppm. One side is connected (bonded) to a standard PVC pipe, DN 32 (supplied by the customer). The other side of the angle is connected to the sensor adapter (Order no. 356924) (bonded).

	Order no.
Angle 45° 21.15.01 d40/ DN 32, PVC	356335

2.1 Measuring and Control Units DULCOMETER

.1.1 Overview of Controllers DULCOMETER

DULCOMETER controllers provide maximum process reliability with a comprehensive range of uses. Different measured variables can be precisely determined. Depending on the application, the control action of the DULCOMETER controllers is precisely adapted to the respective requirements. Different designs enable versatile use.

The advantages at a glance:

- Excellent measuring reliability, for example by means of symmetrical input with pH/ORP
- Excellent measuring precision, for example by means of high-ohmic input with pH/ORP
- Minimal susceptibility to interference, for example by AC voltage interference suppression
- Two-wire system for measurements not prone to interference
- Versatile use thanks to the many options and different designs

DULCOMETER controllers, DULCOTEST sensors and ProMinent metering pumps – thereby ideally coordinating the entire control circuit with measurement, regulation, metering and registration and all from one source.

Controller selection table

Function	DACb	Compact	D1Cb	D1Cc
Measured variables				
рН	+	+	+	+
ORP	+	+	+	+
Chlorine	+	+	+	+
Chlorine dioxide	+		+	+
Chlorite	+		+	+
Bromine	+		+	+
Conductive conductivity	+	+		
Inductive conductivity		+		
Conductivity via mA	+		+	+
Peracetic acid	+		+	+
Hydrogen peroxide	+		+	+
Ozone	+		+	+
Dissolved oxygen	+		+	+
Fluoride	+		+	+
Ion-selective sensors	+			
0/420 mA standard signal, general measured variables	+		+	+
Power supply				
90 – 253V~	+	+	+	+
24 V DC	+			
Method of installation, degree of protection				
Wall mounted IP 65			+	
Mounted on control panel IP 54, 1/4 DIN				+
Combination housing (wall mounted, pillar assembly) IP 66 + IP 67. Mounted on control panel IP 54	+	+		
Measurement				
Number of measuring channels	+, 2/3	1	1	1
Sensor monitoring for pH	+	+	+	+
Temperature compensation for pH	+	+	+	+
Temperature compensation for conductivity		+		
pH compensation for chlorine	+			
Control				
PID controller	+	+	+	+
One-way controller (e.g. with pH acid or alkali)	+	+		
Two-way controller (e.g. with pH acid and alkali)	+		+	+

2.1 Measuring and Control Units DULCOMETER

Function	DACb	Compact	D1Cb	D1Cc
Control inputs				
Digital control inputs	+, 4/7	+, 1	+, 1	+, 1
Control outputs				
Control of metering pump by pulse frequency	+, 2/4	+	+, 2	+, 2
Control of solenoid valve/motor-driven metering pump	+	+	+	+
Flow interference variable processing via mA	+			
Flow interference variable processing via frequency (e.g. from contact water meter)	+			
Metering time monitoring with deactivation of the control variable	+	+	+	+
Output relay configurable as limit value relay	+, 2	+, 1	+, 2	+, 2
Cycle timer	+, 2		+, 2	+, 2
Real-time timer	+, 2			
Outputs				
Analogue output 0/420 mA	+, 2/3	+, 1	+, 1	+, 1
Special functions				
Data logger with SD card	+			
Web server via LAN	+			
Parameter set switch-over via timer	+			
Parameter set switch-over via contact	+			
PROFIBUS DP	+			
PROFINET	+			
Modbus RTU	+			
Subsequent upgrading of functions via activation code	+		+	+
Operating hours counter	+		+	+

2.1 Measuring and Control Units DULCOMETER

Survey of Applications in Measuring and Control Technology 2.1.2 Company name Cust. no. Address: Contact: Phone: E-mail: Industrial segment/sector: Description of the application: Is there an analysis of the measuring solution? ∏ no Required measuring parameters: Temperature (min.): typically: max.: Pressure (min.): typically: max.: pH value (min.): max.: typically: ORP value (min.): typically: max.: Conductivity of the solution (approx.):μS/cm mS/cm g/l mg/l Does the solution contain fluoride (F-)? If so, concentration: Clear or turbid solution? ☐ clear ☐ turbid Does the solution contain solids? If so, which / how many:..... Other comments

2.2.1

Controller DULCOMETER diaLog DACb

Water parameter analysis made easy - with the DULCOMETER diaLog DACb

Do you wish a simple controller for water analysis? One that is easy to operate and with which you can freely select between all common measured variables per channel? There is one: our all-rounder DUL-COMETER diaLog DACb! What is more, it is Ethernet-/LAN-capable and can be ideally integrated into existing networks.

DULCONNEX

The controller DULCOMETER diaLog DACb is our compact all-rounder for water analysis. With its specially designed functionalities, e.g. processing of interference variables and switchover of control parameters, it closes the control circuit between DULCOTEST sensors and ProMinent metering pumps. The measuring and control channels of the DULCOMETER diaLog DACb can be individually configured to meet customer requirements. Everything that you need for the reliable treatment of industrial and process water, drinking water as well as swimming pool water.

Your Benefits

- Simple operation thanks to a clearly arranged display
- More for your money: two measuring and control channels now in the basic configuration
- Versatile use: all common measured variables can be set per channel and subsequently altered
- Control from anywhere: LAN-capable and convenient remote access via integrated web server
- Maximum flexibility: individually adjustable to different operating statuses, e.g. day-night mode
- Excellent process reliability: avoidance of incorrect metering by time-based monitoring of control variables
- Global application options: 24 operating languages can be selected and changed
- Minimal time and effort: effortless duplication of device settings
- Precise monitoring and documentation: event, calibration and measured data logger with easy-to-access SD memory card
- Optimum communication: integration into customer networks by means of different fieldbus systems (PROFIBUS® DP, Modbus RTU)
- Connection to the DULCONNEX IIoT solution, developed by ProMinent.

Technical Details

- Measured variables: pH, ORP, chlorine, chlorine dioxide, chlorite, bromine, conductivity, peracetic acid, hydrogen peroxide, ozone, dissolved oxygen and fluoride
- Installation, degree of protection: Combination housing (wall mounting, control panel mounting, pillar assembly) IP 67 and IP 66
- Control: three measuring and control channels, each with independent monodirectional PID controller (optional: two bidirectional PID controllers)
- 24 V DC protective low voltage supply e.g. by means of solar system or in the wet area of waterworks
- Temperature compensation for pH and for chlorine dioxide process sensor CDP, pH compensation for
- Digital inputs for the processing of control signals, e.g. of sample water limit contacts, remote stop control and to monitor the liquid levels in chemical storage tanks
- Control outputs for electronically controlled metering pumps and solenoid valves
- Interference variable processing: simple control of water parameters in flowing water by processing the flow in the control algorithm
- Adaptation of the controller setpoint to changed process conditions is possible via remote control by means of the mA signal of a PLC or with more stringent requirements via the field bus option

Field of Application

- Measurement and control of water parameters in industrial and process water treatment plants
- Monitoring of water parameters for potable water
- Measurement of pH value and disinfection parameters in the food and beverage industry
- Measurement and control of hygiene parameters in swimming pools
- Monitoring of chlorine dioxide concentration in systems for legionella control and prevention, for example in schools, hotels or hospitals
- Measurement of disinfection parameters of irrigation and sprinkler irrigation water in horticulture

Technical Data

Resolution

Accuracy

Measurement input Temperature compensation

Disturbance signals

Correction range temp.

pH compensation range for chlorine

Measured variables and measuring ranges

Connection type mV: pH: 0.00 ... 14.00

ORP potential: -1500 ... +1500 mV

Type of connection mA (amperometric measured variables,

measuring ranges corresponding to sensors):

Chlorine Chlorine dioxide Chlorite Bromine

Ozone

Hydrogen peroxide (PER 1 and PEROX H-3E)

Hydrogen peroxide (PEROX H2.10 P with PEROX transducer V2

order. no. 1047979) Peracetic acid Dissolved oxygen

Type of connection mA (potentiometic measured variables, measuring ranges corresponding to transmitters):

Hq

ORP potential Fluoride:

via module VA and function upgrade package 3 and 4 Conductivity mA via sensor CCT 1-mA-20 mS/cm Temperature:

via Pt 100/Pt 1000, measuring range 0 ... 150 °C

pH: 0.01

ORP voltage: 1 mV temperature: 0.1 °C

amperometric analysis (chlorine etc.): 0.001/0.01 ppm, 0.01

vol.%, 0.1 vol.%

0.3% based on the full-scale reading pH/ORP (input resistance > 0.5 x $10^{12} \Omega$)

Pt 100/Pt 1000 for pH, chlorine dioxide (CDP) sensor and fluoride

0...100 °C

Sensor CLE 3 and CLE 3.1: 6.5 ... 8.5, sensor CBR: 6.5 ... 9.5 Flow via 0/4 ... 20 mA signal or contact water meter, 1 - 500 Hz. The multiplicative interference variable can influence all channels, while the additive interference variable only influences one

channel.

Control characteristic P/PID control

Control 2 or 3 bidirectional controls

Analogue outputs 2 (3) x 0/4 ... 20 mA electrically isolated, max. load 450 Ω , range

and assignment (measured, correction, control variable) can be

Set

Control outputs 2 (4) pulse frequency outputs for controlling metering pumps

2 relays (limit value or pulse length control) 250 V ~3 A, 700 VA contact type, changeover

Alarm relay 250 V ~3 A, 700 VA contact type, changeover Digital control inputs 4 (7) as a remote control input for the functions par

4 (7) as a remote control input for the functions pause control / sample water fault, parameter set switch-over, level monitoring of

chemical tanks

Electrical Connection 100 – 230 V, 50/60 Hz, 25 VA, optional 24 V DC **Field bus connection** PROFIBUS® DP, Modbus RTU, PROFINET

Ambient temperature 0 ... 50 °C (for use indoors or with a protective enclosure) **Enclosure rating** Wall-mounted: IP 66 and IP 67 (NEMA 4X)

Mounted in control cabinet: IP 54 for control cabinet door CE and MET (corresponding to UL as per IEC 61010)

Tests and approvalsCE and MET (corresponding to UL as peHousing materialPC with flame proofing equipmentDimensions250 x 220 x 122 mm (WxHxD)

Weight 1.3 kg

Standard equipment with basic measured variable

- PID controller with pulse frequency-based metering pump control for 2 metering pumps.
- 2 analogue outputs for measured value, correction value or control variable (depending on the optional equipment).
- 4 digital inputs for sample water fault detection, level switch, pause and parameter switch-over.
- 2 output relays can be programmed either as output for limit value, cycle timer, real-time timer or control output (depending on the optional equipment).
- Measured variables and language selection during commissioning.
- Temperature compensation of the pH, chlorine dioxide (CDP) and fluoride measurement via Pt100/Pt1000.
- 24 operating languages: all European languages as well as Chinese, Russian, Thai, Korean. The operating language is selected during commissioning and can be changed at any time by a keyboard shortcut. The documentation language is selected via the identity code. A data carrier is also supplied that contains all other languages.
- Device parametrisation is saved and transferred on an SD card.
- Calibration and event data logger (without SD card, data is saved in the controller).
- Interference variable processing (flow) via frequency (contact water meter).
- Subsequent upgrade of the software function by means of an activation key or firmware update.

Description of the possible measured variables as basic measured variables:

Module VA mV/temperature + mA sensor input:

- 1 sensor input for pH or ORP sensor and temperature sensor Pt100/Pt1000
- 1 sensor input for connecting, e.g. chlorine sensors, such as CBR or pH transducer pHV1 and fluoride including interference variable or pH compensation for chlorine.

Module AA mA/mA sensor input:

2 sensor inputs for connecting, e.g. chlorine sensors, such as CBR or pH transducer pHV1, including interference variable or pH compensation for chlorine.

Module VV mV/mV temperature sensor input:

2 sensor inputs for connecting pH and ORP sensors and temperature sensors Pt100/Pt1000, e.g. of type PHER, RHER, PHEI, RHEIC, Pt100SE

Module L3 conductivity temperature sensor input:

2 sensor inputs for connecting conductive conductivity sensors and temperature sensors Pt100/Pt1000, e.g. of type LFT, LMP

Optional equipment for third pH measuring channel

Package 2

- Third measuring and control variable pH via mV or mA with or pH compensation for chlorine without external setpoint specification via analogue signal for channel 1 without flow interference variable via mA for channel 1
- Third analogue output.
- Three additional digital inputs, e.g. for level monitoring, pause and sample water alarm.
- Control two additional metering pumps.

Package 3

- Third complete measuring and control channel, any measured variable, with PID controller.
- Third analogue output for measured value, correction value or control variable (depending on the optional equipment).
- Three additional digital inputs, e.g. for level monitoring, pause and sample water alarm.
- Temperature compensation of the pH, chlorine dioxide (CDP) and fluoride measurement.

Package 4

Combination of packages 2 and 3 (only one channel for amperometric sensors is available with the mA interference variable).

Communication options

- Measurement data logger with SD card.
- Visualisation of the measured data using a web server via LAN and PC/tablet PC and web browser.
- PROFIBUS DP, Profinet or Modbus RTU.

Hardware upgrade

Protective RC circuit for output relay: Protects the output relay if inductive loads are to be switched (e.g. solenoid valves or motors). Not with 24 V DC electrical connector.

A complete measuring station comprises:

- Transmitter/controller DACb (see identity code)
- Fitting: BAMa, DGMa..., DLG III ..., immersion fitting
- pH sensor (depending on identity code)
- ORP sensor (depending on identity code)
- Chlorine, chlorine dioxide, chlorite, bromine, dissolved oxygen sensor
- Transducer for pH or ORP dependent on the cable length (> 10 m)
- Sensor cable

(for further information: Immersion fittings, see page \rightarrow 150; pH sensors with SN6 plug-in head or VARIO Pin, see page \rightarrow 62; ORP sensors with fixed cable, see page \rightarrow 98; sensors for chlorine, see page \rightarrow 16; 4 ... 20 mA transmitter (two-wire system), see page \rightarrow 235; sensor accessories, see page \rightarrow 133)

Accessories for Controller DULCOMETER diaLog DACb

	Order no.	
Cable combination, coaxial, Ø 5 mm 0.8 m - SN6 - pre-assembled	1024105	
Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106	
Cable combination, coaxial, Ø 5 mm 5 m - SN6 - pre-assembled	1024107	
SN6 coaxial connector, retrofit component, D1Cb, DAC, DCCa	1036885	
Fitting kit for DAC control panel installation	1041095	
Retrofit kit DACa/DACb RC module	1075226	
512 MB SD memory card, industrial	732483	

2.2.2 Identity Code Ordering System for diaLog DACb, Wall Mounting IP 67

DACb	Type of mo	untina													
	W	Wall mo	unting												
	s		panel mou	ınting											
		Version	Lucial D	Mina											
		00		ProMinent logo rating voltage											
			4	24 V D											
			6	100 - 2		50/60) Hz								
				Basic r	neası	ured v	arial	oles							
				VA	2 me		ing a	and o	conti	rol c	hanı	nels	cor	nnect	or type mV/temperature + mA, e.g. for pH + chlorine sensors or pH +
				AA			ina a	and o	conti	rol c	hanı	nels	cor	nect	or type mA + mA, e.g. for chlorine dioxide/chlorite sensors
				W		easur									or type mV/temperature + mV temperature, e.g. for pH + ORP or two pH
				L3	2 m					rol c	hanı	nels	cor	nnect	or type: conductive conductivity and temperature via Pt100/Pt1000
					0	Non		Juon	0						
					2										tion via mA, all acting on channel 1, additionally: 2 pump outputs, 3
					3	digit									your choice + control, additionally: 2 pump outputs, 3 digital control
						inpu	ts, 1	mΑ	out	out					
					4								acka	ages	2 and 3
						Soft 0		defa		setu	ngs				
										of th	ne m	neas	urec	d vari	ables
							0	all s	ens	or in	puts	s via	tern	ninal	
							1				<u> </u>				oaxial connector
								_	ital s Nor		or/	actu	ator	coni	nectors
								0			ınica	ation	inte	erface	
									0	Nor	ne				
										1				ermir	
														term	inal r, connection via M12 C coded
													ев s M12		r, connection via M12 C coded
												gger		,	
													log	-	
										1				gger	
											0	No		храг	nsion
											1	Pro	tect		C circuit for switching inductive loads via the output relay, e.g. DF2a,
														d val	ves
													orov ICE		ndard)
														+ E/	,
														T (U	
												08			ET (Europe)
													0	rtifica non	
													ľ		cumentation language
														00	No document
														1 1	German
															English Spanish
															French
														BG	Bulgarian
														1 1	Czech
														1 1	Danish Swedish
															Estonian
															Greek
															Finnish
															Croatian
														HU IT	Hungarian Italian
															Japanese
															Korean
															Lithuanian
															Latvian
															Dutch Polish
															Portuguese
															Romanian
														SL	Slovenian
														SK	Slovakian

2.2.3 Function Upgrade for Measuring and Control System diaLog DACb

Prerequisite:

Channel 2 must be available in the controller. Missing hardware must be retrofitted in the factory.

Channel 2 can be enabled from either package 2 or package 3. The packages correspond to the ones also described in the identity code. The data logger function can always be enabled.

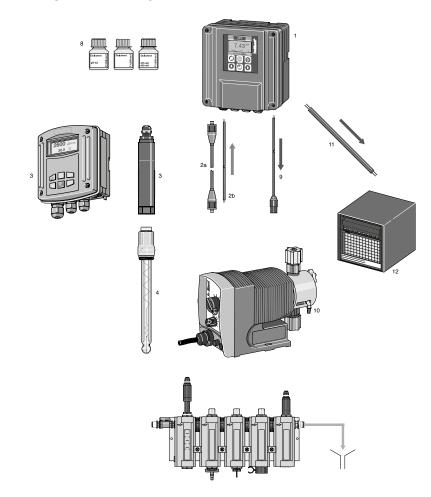
The activation code can only be used for the relevant controller with the specified serial number.

The activation code can be transmitted via email and is then read into the controller from the SD card or entered over the controller keypad. The enabled function is then immediately available and need only be activated and parametrised.

The following information must be available to determine the activation code:

- The serial number of the controller in question (see operating menu under "Diagnostics", "Device information") and
- the desired upgrade package.

		Order no.
Upgrade: Package 2 to package 3	Based on package 2	1047874
Upgrade: Package 2 to package 4	Based on package 2	1047875
Upgrade: Package 3 to package 4	Based on package 3	1047876
Upgrade: Data logger	Based on 0=no data logger	1047877


2.2.4

DACb Application and Ordering Examples

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water, waste water and the food industry.

Measuring and Control Systems Consist of

- Controller e.g. DACb
- 2a Measuring line e.g. coaxial cable for pH and ORP sensors Pt 100/, Pt 1000
- 2b 2-core measuring line for amperometric sensors with mA signal and transducer
- 3 4 ... 20 mA transducer (for two wire system), DMTa or pH V1
- 4 Sensor, e.g. pH single-rod sensor
- 5 Installation fitting e.g. in-line probe housing type DGMA
- 6 Stopcock for sample water line
- 7 Sample valve
- 8 Buffer solutions (pH/ORP)
- 9 Control cable (control of a metering pump)
- 10 Actuator e.g. Beta® metering pump

Examples for:

- 1 Treatment of swimming pool water
- 2 Monitoring of drinking water
- 3 Monitoring of waste water (pH neutralisation)
- 4 Applications in the food industry

2.2.5

Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative check with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Qty		Order no.	
1	2-channel controller for pH and ORP diaLog DACb with data logger and protective	DACBW006VV0000011010EN	
	RC circuit		
1	pH Sensor PHES 112 SE	150702	
2	Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106	
1	ORP Sensor RHES-Pt-SE	150703	
1	Bypass fitting BAMa with two PG 13.5 modules and sensor adapter	BAMAEU222XXXF01X000001EN	
4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122	

Benefits

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of measured data
- Automatically correct pH value and correct disinfectant concentration
- All products are selected to operate correctly with each other

Hotel swimming pool (public swimming pool) with measurement and control of the chlorine concentration and the pH value and measurement of the redox potential

Task and conditions of use

The pool water of a hotel swimming pool, frequently used by guests, is to be treated. Sulfuric acid is used to correct the pH and sodium-calcium hypochlorite is used as the disinfectant. The disinfectant is to be regulated by measuring the chlorine (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). An ORP measurement is to provide information about the disinfection effect. The measured values are to be recorded. The responsible caretaker would like to see the measured values and messages on his smartphone. To achieve this, a DACb is connected to an existing Wi-Fi network. Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and, in the event of failure, the controller is to stop.

Components of the measuring/control station

Qty		Order no.	
1	3-channel controller for pH, ORP and chlorine diaLog DACb with data logger, web	DACBW006VV3000E11010EN	
	interface and protective RC circuit		
1	pH Sensor PHES 112 SE	150702	
1	Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106	
1	ORP Sensor RHES-Pt-SE	150703	
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	1005672	
1	Sensor for free chlorine CBR 1-mA-2 ppm	1038015	
1	Bypass fitting BAMa with two PG 13.5 modules and sensor adapter	BAMAEU222XXXF01X000001EN	
8 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122	

- Simple operation, controller with plain text operator guidance in 24 languages
- View measured values and messages on a PC or smartphone
- Recording of measured data
- Automatically correct pH value and correct concentration of disinfectant
- All products are pre-selected to coordinate with each other

Private swimming pool with measurement of free chlorine and pH value

Task and conditions of use

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta® 4b metering pumps are to be controlled.

Components of the measuring/control station

Qty		Order no.
1	2-channel controller for pH and chlorine diaLog DACb with data logger	DACBW006VA0000011010EN
1	Chlorine sensor CLE 3-mA 2 ppm	792920
8 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	pH Sensor PHES 112 SE	150702
1	Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106
1	Bypass fitting BAMa with one PG 13.5 module and one G 1" module and sensor	BAMAEU2211XXF01X000001EN
	adapter	

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- Automatically correct pH value and direct measurement and control of chlorine concentration
- All products are matched

2.2.6 Application Examples, Potable Water Monitoring

Measurement and control of ozone in water works for pre-oxidation of the raw water

Tasks and applications

In the treatment of potable water in a water works a measuring and control station is needed at the pre-oxidation stage at the inlet to the water works for the ozone oxidising and disinfectant agent used. With a constant flow, the fluctuating attrition of the ozone, caused by the changing quality of the raw water, is to be compensated on the basis of the measured variables. The following conditions must be met:

- Oxidising agent / disinfectant: Ozone with a concentration to be set to 0.2 ppm
- Raw water: Surface water with a pH of 7.3-7.6 and a temperature of 5 °C-17 °C
- Installation of the measuring station in the bypass of the process flow
- Alarm to signal transgression of upper and lower limit values
- Display of measured results and calibration via a measuring instrument in the proximity of the bypass installation and transmission of the measured value to the control desk via an electrically isolated 4-20 mA signal
- Alarm to signal lowering of sample water flow

Components of the measuring/control station

Qty		Order no.
1	2-channel controller for ozone diaLog DACb with data logger	DACBW006VA0000011010EN
1	Ozone sensor OZE 3-mA-2 ppm	792957
8 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with two PG 13.5 modules and sensor adapter	BAMAEU222XXXF01X000001EN

Benefits

- Simple operation, controller with plain text operator guidance
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

Measurement and control of free chlorine with feedforward control in a waterworks

Task and conditions of use

A measuring and control system is needed for the "free chlorine" disinfectant in the treatment of drinking water in a water works. Metering is largely proportional to the flow (MID 4...20 mA). However control should also be proportionately dependent on measured value to compensate for peaks in chlorine consumption, for instance in the event of rainfall. The following conditions must be met:

- Disinfectant: free chlorine with an adjustable concentration of 0.2 mg/l
- Raw water: source water with a pH of 7.0 7.5 and a temperature of 1 13 °C
- Installation of the measuring station in the bypass of the process flow
- Display of measured results and calibration via a measuring instrument in the proximity of the bypass installation and transmission of the measured value and control variable to the control panel via PROFIBUS DP
- Alarm to signal the lowering of sample water flow (via PROFIBUS DP)
- Alarm signalling the transgression of the preset upper and lower limit values (via PROFIBUS DP)
- The measured data are to be recorded in the controller.

Components of the measuring/control station

Qty		Order no.
1	2-channel controller for chlorine diaLog DACb with data logger	DACBW006VA0000011010EN
1	Chlorine sensor CLE 3-mA-0.5 ppm	792927
8 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with two PG 13.5 modules and sensor adapter	BAMAEU222XXXF01X000001EN

Benefits

- Precise, self-regulating disinfection by a fully automated measuring and control system
- Flow-proportional control can be safeguarded by proportionate control dependent on measured value to combat peaks in consumption
- Reliable, safe operation thanks to alarm signalling in the event of limit violation and lowering of sample water flow
- The control is monitored by transmission of the measured value and control variable via the PROFIBUS DP to the control panel

Waterworks with control measurement of chlorine

Task and conditions of use

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A magnetically induced flow meter with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the measuring/control station

Qty		Order no.
1	2-channel controller for chlorine with interference variable processing diaLog DACb	DACBW006VA0000B11010EN
	with data logger and PROFIBUS-DP	
1	Chlorine sensor CLE 3-mA-0.5 ppm	792927
8 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with two PG 13.5 modules and sensor adapter	BAMAEU222XXXF01X000001EN

Benefits

- Precise, self-regulating disinfection by a fully automated measuring and control system
- Flow-proportional control can be safeguarded by proportionate control dependent on measured value to combat peaks in consumption
- Reliable, safe operation thanks to alarm signalling in the event of limit violation and lowering of sample water flow
- The control is monitored by transmission of the measured value and control variable via the PROFIBUS DP to the control panel

Waterworks with measurement of chlorine dioxide

Task and conditions of use

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A magnetic flow meter with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the measuring/control station

Qty		Order no.
1	2-channel controller for chlorine dioxide diaLog DACb with data logger	DACBW006VA0000011010EN
1	Chlorine dioxide sensor CDE 2-mA-0.5 ppm	792930
8 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with two PG 13.5 modules and sensor adapter	BAMAEU222XXXF01X000001EN

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- Primarily, chlorine dioxide metering proportional to flow. Where this is not possible additive measured-value dependent control
- All products are matched

Legionella prevention in public buildings

Task and conditions of use

The chlorine dioxide and the chlorite concentration are to be monitored and recorded in the fresh water distribution system of a public building for the prevention of legionella. Chlorite is a disinfection by-product of chlorine dioxide that arises if germs have been killed. The chlorite concentration is limited using a limit value of 0.2 mg/l.

Components of the measuring/control station

Qty		Order no.	
1	2-channel controller for chlorine dioxide and chlorite diaLog DACb with data logger	DACBW006AA0000011010EN	
1	Chlorine dioxide sensor CDE 2-mA-0.5 ppm	792930	
15 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122	
1	Chlorite sensor CLT 1-mA-0.5 ppm	1021596	
1	Bypass fitting BAMa with two G 1" modules and sensor adapter	BAMAEU22X2XXF01X000001EN	

Benefits

- Simple operation, controller with plain text operator guidance
- Recording of all measured data
- Upon exceeding of the chlorite limit value, a limit value relay switches the chlorine dioxide metering off or to a basic load.
- All products are matched

Oxidation of well water with hydrogen peroxide

Task and conditions of use

The water drawn from a deep well is to be oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60% the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Qty		Order no.
1	2-channel controller for hydrogen peroxide diaLog DACb with data logger	DACBW006VA0000011010EN
1	Hydrogen peroxide sensor PER 1-mA-2000 ppm	1022510
8 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with one G 1" module and sensor adapter	BAMAEU22X1XXF01X000001EN

- Hygienic trouble-free well water
- Simple operation, controller with plain text operator guidance
- Recording of measured data
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are matched

Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant (non-steady receipt of water)

Task and conditions of use

2.2.7

Turbid waste water with a significantly fluctuating pH value and intermittent occurrence is to be neutralised in batch operation. The waste water is pumped into an interim tank and is neutralised using acid and alkali. The pH value should be measured and regulated in a stirred batch storage tank. The pH sensor should be fitted at a typical position on the tank using an immersion fitting. Once it has been neutralised the water is pumped onwards. and the pH value should be controlled again in this pipe.

The DACb controller data logger automatically records the pH values and temperatures of both pH measuring points. In parallel, a digital input is used to record the end position switch of the storage tank outlet. In this way, it can be precisely determined how high the pH value was at the time of draining. Any limit value transgressions that may have occurred are also recorded in the data logger. If a limit value transgression occurs, the shut-off valve closes automatically. A neutral zone is additionally defined in the controller. If the pH value comes within this neutral zone, no control takes place. There may be solids in the waste water.

Components of the pH measuring/control station in the collection tank

Qty		Order no.
1	2-channel controller for pH and ORP diaLog DACb with data logger and protective RC circuit	DACBW006VV0000011010EN
1	Cable combination coaxial 5 m-SN6, shield connection	1024107
1	pH Sensor PHER 112 SE	1001586
1	Pt 100 SE temperature sensor	305063
1	Cable combination of control line 5 m SN6, open end (Pt 100, Pt 1000)	1003208
1	Immersion fitting with 3 sensor slots IPHa 3-PP	1008602
1	Cable combination coaxial 5 m - SN6 - pre-assembled	1008633

Components of the measuring/control station in the outlet

Qty		Order no.
1	pH Sensor PHER 112 SE	1001586
1	Cable combination coaxial 5 m-SN6, shield connection	1024107
1	Retractable process assembly WA-PH 1	1020631

Note: other sensors may also be used depending on the quality of the waste water (see selection guide for pH sensors DULCOTEST)

With seriously contaminated waste water with solid matter content

Qty	Order no.
1 pH Sensor PHEX 112 SE	305096

with clear waste water

_Qty	Order no.
1 pH Sensor PHEP 112 SE	150041

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of all measured data and the opened or closed status of the shut-off valve
- pH limit value monitoring of drainage water
- pH control and final checking in a controller
- All products are selected to operate correctly with each other

Neutralisation of the waste water of an industrial plant (continuous receipt of water)

Task and conditions of use

In an industrial plant, waste water arises in a continuous manner (continuous production), and can be acidic or alkaline. The water runs through a manifold. The flow volume is measured using a MID flow meter because the flow varies within wide limits. There is a pH sensor with a pH sliding and retractable assembly in the pipework with which the pH value is adjusted. Further along the pipework the pH value is monitored once again as a final check.

The flow signal of the flow meter is evaluated as a multiplicative interference variable in the DACb controller, i.e. this flow signal = disturbance variable is used to evaluate the controller control variable (control of the metering pumps) in a flow dependent manner. In the event of a similar control deviation (deviation of the actual value from the setpoint), for example, with a small flow, less acid or alkali is needed than with a larger flow. This information makes it easier for the controller to adhere to the setpoint. In the absence of this flow information, a PID controller alone could not perform such a task or could only perform it with great difficulty. What's more, a neutral zone is defined in the controller. If the pH value is within this neutral zone, no control takes place.

There may be solids in the waste water.

The DACb controller data logger automatically records the pH values and temperatures of both pH measuring points. Any limit violations that may have occurred are also recorded in the data logger.

Components of the measuring/control station in the collection tank

Qty		Order no.
	1 2-channel controller for 2 x pH and temperature diaLog DACb with data logger	DACBW006VV0000011010EN
	1 pH Sensor PHER 112 SE	1001586
	1 Cable combination coaxial 5 m-SN6, shield connection	1024107
	1 Retractable process assembly WA-PH 1	1020631

Components of the measuring/control station in the outlet

Quaii-	Order no.
tity	
1 pH Sensor PHER 112 SE	1001586
1 Cable combination coaxial 5 m-SN6, shield connection	1024107
1 Retractable process assembly WA-PH 1	1020631

Note: other sensors may also be used depending on the quality of the waste water (see selection guide for pH sensors DULCOTEST)

With seriously contaminated waste water with solid matter content

Quan-	Order no.
tity	
1 pH Sensor PHEX 112 SE	305096

With clear waste water

Quan-	Order no.
tity	
1 pH Sensor PHEP 112 SE	150041

- Simple operation, controller with plain text operator guidance in 24 languages
- Processing of the flow signal as a disturbance variable
- Recording of all measured data and the opened or closed status of the shut-off valve
- pH limit value monitoring for the waste water
- pH control and final checking in a controller
- All products are selected to operate correctly with each other

ProMinent

2.2.8

Application Examples in the Food Industry

Bottler disinfection in the beverage industry

Task and conditions of use

Continuous disinfection of the filler with disinfection solution means this sensitive part of the bottling process is reliably sterilised. Continuous spraying with disinfectant solution means high hygiene requirements are fulfilled.

The disinfectant solution comprises water with additional chlorine dioxide. The concentration of the chlorine dioxide is measured and set to the desired value using the DACb controller. From time to time the chlorine dioxide concentration must be increased.

An alternative parameter set can be activated in the DACb via a switch input. In this way, a switchover, regularly required, can be carried out smoothly without the need for continual adaptation of the setpoint in the controller menu.

The measured data is to be recorded.

Components of the measuring/control station

Qty		Order no.
1	2-channel controller for chlorine dioxide diaLog DACb with data logger	DACBW006VA0000011010EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	1033393
10 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with one G 1" module and sensor adapter	BAMAEU22X1XXF01X000001EN

Benefits

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of all measured data
- Switchover of control parameters via an external potential-free contact
- All products are selected to operate correctly with each other

Irrigation water disinfection for useful plants

Task and conditions of use

The irrigation water from e.g. salad seedlings is drawn from a well. The water could be contaminated with germs which could harm the salad seedlings. To prevent this, the irrigation water is disinfected using chlorine dioxide. The irrigation water requirement is always constant.

The irrigation water may contain suspended matter.

Components of the measuring/control station

Qty		Order no.
1	3-channel controller for the measurement and control of chlorine dioxide concentration and the measurement of the pH value and electrolytic conductivity, diaLog DACb, with data logger and web interface	DACBW006VA3000E10010EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	1033393
5 m	Coaxial cable, Ø 5 mm, 10.0 m	305040
1	pH Sensor PHER 112 SE	1001586
1	Cable combination coaxial 5 m - SN6 - pre-assembled	1008633
1	Conductivity sensor CCT 1-mA-20 mS/cm	1081545
5 m	Cable type LKT 4 x 0.5 mm ² and shield for connection of the CCT 1	723612
1	Bypass fitting BAMa with one G 1" module and sensor adapter	BAMAEU22X1XXF01X000001EN
5 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

- Simple operation, controller with plain text operator guidance in 24 languages
- Processing of the irrigation water flow signal as an interference variable
- Recording of all measured data
- All products are pre-selected to coordinate with each other

2.2.9

Odour Reduction Application Examples (Clarification Plants)

Exhaust air scrubbers, clarification plants or fragrance production

Task and conditions of use

The odorous components of the exhaust air from a clarification plant are to be scrubbed out using an exhaust air scrubber and oxidised using hydrogen peroxide. Here the hydrogen peroxide concentration is to be regulated to maintain 100 mg/l. As the exhaust air is acidic, the pH value is to be regulated to maintain 7.2. The measured values are to be recorded. The scrubbing water temperature can vary widely in the range 5 - 35 °C. Beta® 4b metering pumps are to be pulse frequency controlled.

Components of the measuring/control station

Qty		Order no.
1	2-channel controller for pH and chlorine diaLog DACb with data logger	DACBW006VA0000011010EN
1	pH Sensor PHES 112 SE	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	1005672
1	H ₂ O ₂ sensor PEROX-H2.10 P	792976
1	PEROX transducer V2, measuring range switchable up to 20/200/2,000 mg/l	1034100
5 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Pt 100 SE temperature sensor	305063
1	Cable combination of control line 5 m SN6, open end (Pt 100, Pt 1000)	1003208
1	Reference electrode REFP-SE	1018458
1	DLG III A with PVC hose connectors	914955
1	Polishing paste (90 g tube)	559810
1	Magnetic stirrer 100– 240 V	790915
1	Magnetic stirring rod 15x6 PTFE (magnetic "fish")	790917
1	Photometer DT3B	1039317

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of all measured data
- Simultaneous measurement and control of the pH value and the hydrogen peroxide concentration
- All products are selected to operate correctly with each other

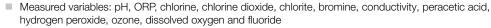
Controller DULCOMETER D1Cb/D1Cc 2.3

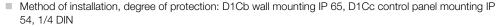
2.3.1

Controller DULCOMETER D1Cb/D1Cc

The water analysis workhorse

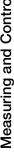
The controller DULCOMETER D1Cb/D1Cc can be used for control tasks in potable water treatment, waste water treatment and many other areas. Safe, convenient and clear, thanks to the large illuminated graphic display, plain text operating menu and pH sensor monitoring.


The D1Cb/D1Cc controller is a 1-channel P/PID controller for the measured variables pH, ORP, chlorine, chlorine dioxide, chlorite, ozone, bromine, peracetic acid, hydrogen peroxide, fluoride, dissolved oxygen and conductivity via mA. The sensors for pH and ORP can be directly connected via coaxial cable or using the 4-20 mA sensor input. The controller can bidirectionally control the measured variables, monitor limit values and transmit the measured value via an mA output, e.g. to a PLC Programmable Logic Controller. The mA output can optionally also be configured as an interference variable output. The controller has two pulse frequency outputs to control two metering pumps (raise and lower). Two output relays can optionally be used as limit value relays or to control motor-driven pumps or solenoid valves. An alarm relay signals the occurrence of a fault. A digital input is used to switch off the control or to process a sample water limit contact by remote control. The impact of temperature on the measurements can be provided by temperature measurement or by manual input. Menu-driven operation is possible in 20 languages.



Your Benefits

- Flexibility through free selection of variables from all measured variables
- Safety through sensor monitoring of pH for glass breakage and line breakage
- Flexibly upgradable, thanks to subsequent activation option of functions by means of an activation code
- VARIOus installation options: wall-mounted or installation in a control cabinet



- Measurement: 1 measuring channel, temperature compensation for pH
- Control: PID controller, bidirectional controller (e.g. with pH acid and alkali)
- Control inputs: 1 digital control input

Field of Application

- Measurement and control of water parameters in industrial and process water treatment plants
- Waste water neutralisation
- Measurement of the pH value and the disinfection parameters in potable water treatment and in the food and beverage industry
- Measurement and control of the hygiene parameters in swimming pools

2.3 Controller DULCOMETER D1Cb/D1Cc

Technical Data

Measuring range Connection type mV:

pH 0.00 ... 14.00 ORP - 1000 ... +1000 mV

Connection type mV:

Chlorine: 0.00...0.500/2.00/5.00/10.0/20.0/50.0/100.0 ppm Chlorine dioxide: 0.00...0.500/2.00/10.0/20.0 ppm

Chlorite: 0.02..0.50/0.1...2 ppm Bromine: 0.02...2.0/0.1...10.0 ppm

Ozone: 0.00...2.00 ppm

Hydrogen peroxide only with sensor PER1: 2.0...200.0/20...2000

ppm

Peracetic acid: 1...20/10...200/100...2000 mg/l Dissolved oxygen: 0.1...10/0.1...20 ppm

pH: 0.00...14.00 ORP: 0...+1000 mV

Conductivity: 0...20/200/1000 mS/cm via mA transducer

Temperature: 0...100 °C via mA transducer

Resolution pH: 0.01 pH ORP: 1 mV

Amperometric analysis (chlorine etc.): 0.001/0.01 ppm, 0.01 vol.

%

Accuracy 0.5% of the upper range value

Measurement inputpH/ORP (input resistance > $0.5 \times 10^{12} \Omega$)Correction variableTemperature via Pt 100/Pt 1000

Min. temperature correction range 0 °C

Max. temperature correction range 100 °C

Control characteristic P/PID control
Control 2-way control

Signal current output 1 x 0/4 – 20 mA electrically isolated

Max. load 450 Ω

Range and assignment (measured, correction or control variable)

can be adjusted

Control outputs 2 pulse frequency outputs for controlling the metering pump

2 relays (limit value or pulse length)

Alarm relay 250 V ~3 A, 700 VA contact type, changeover

Electrical Connection 100 – 230 V, 50/60 Hz, 15 VA

Ambient temperature -5 ... 50 °C
Enclosure rating Wall-mounted: IP 65

Control panel installation: IP 54

Dimensions Wall-mounted: 198 x 200 x 76 mm (WxHxD) (D1Cb)

Control panel installation: 96 x 96 x 145 mm (WxHxD) (D1Cc)

Weight 0.8 kg

- Can be flexibly upgraded thanks to the option for activating functions at a later date by means of activation code (see D1Ub/D1Uc upgrade identity code)
- Equipped for the most important basic requirements in water treatment
- Illuminated graphic display
- Operator guidance through plain text menu available in 20 languages in the controller
- Automatic buffer detection for pH calibration

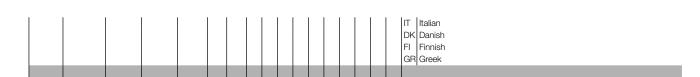
Identity code ordering system D1Ub, subsequent function upgrade for D1Cb, see page \rightarrow 184

A complete measuring station comprises:

- Transmitter/controller D1Cb/D1Cc (see identity code)
- Fitting: BAMa, DGMa..., DLG III ..., immersion fitting
- pH sensor (depending on identity code)
- ORP sensor (depending on identity code)
- Chlorine, chlorine dioxide, chlorite, bromine, dissolved oxygen sensor
- Transducer for pH or ORP (depending on identity code)
- Sensor cable

Accessories for Controller DULCOMETER D1Cb/D1Cc

	Order no.	
Cable combination, coaxial, Ø 5 mm 0.8 m - SN6 - pre-assembled *	1024105	
Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled *	1024106	
Cable combination, coaxial, Ø 5 mm 5 m - SN6 - pre-assembled *	1024107	
SN6 coaxial connector, retrofit component, D1Cb, DAC, DCCa	1036885	
Protective RC circuit retrofit kit for controller DULCOMETER D1Cb	1034238	
Spare parts kit (frame, support brackets) for controllers DULCOMETER	790130	
D1Cc		


^{*} for connection where measured variable= 5

2.3.2 Identity Code Ordering System DULCOMETER D1Cb, Wall Mounting Type of mounting Wall mounting (IP 65) Version With ProMinent logo 90...253 V, 48/63 Hz (wide-range power supply) CE mark Hardware extension I None Hardware extension II None RC protection for power relays External connection None Software defaults Software basic setting (all of the following selection options are automatically set to the basic Software pre-set (the following selection options must be evaluated) Measured variable default setting Universal (choice upon commissioning) Peracetic acid В Bromine Chlorine D Chlorine dioxide Fluoride Hydrogen peroxide (PER1) Chlorite Hal R ORP s 0/4...20 mA Standard signal, general Temperature via mA transducer Dissolved oxygen Ozone Conductivity via mA transducer Measured variable connection (default setting) mA terminal can be switched to mV, all measured variables selectable SN6 plug for P or R or standard signal 0/4-20mA, all measured variables selectable mV terminal can be switched to mA, all measured variables can be selected Correction variable None Temperature Pt 100/1000 via terminal (for pH and conductivity) Manual temperature input (for pH and conductivity) Control input none Pause control Signal output Inone 1 Analogue signal output 0/4...20 mA Power control Alarm and 2 limit value relays or 2 timer relays Alarm and 2 solenoid valve relays or 2 timer relays Pump control none 2 pumps via pulse frequency Control characteristic 0 Inone P control PID control Language 00 No default setting DE German EN English ES Spanish SV Swedish PT Portuguese CN Chinese FR French CZ Czech JP Japanese KR Korean NO Norwegian NL Dutch PL Polish RU Russian

								TH Thai HU Hungarian IT Italian DK Danish
								FI Finnish GR Greek

2.3.3 Identity Code Ordering System DULCOMETER D1Cc, Control Panel Mounting

D1Cc	Type of mo	unting															
	D		anel installation (IP 54)														
		Version	,														
		00	With Pro		_												
			Operatin	-		10/00	11. 1							\ \			
			6	9025		+0/03	ΠZ (wide	-ran	ge p	owe	su	hbiy)			
				Approv 01		mark											
						dware	exte	ensic	n I								
					0	None											
						Hard	_		ensi	on II							
						0	Nor										
							Exte 0	_		nect	ion						
							١	Nor Sof		e def	aults	3					
													ettir	ng (a	all of	the fo	ollowing selection options are automatically set to the basic
									sett	ing)				-			
								V									ection options must be evaluated)
																tting omm	nissioning)
										Pera				э ир	011	011111	
										Bron							
										Chlo							
										Chlo		dio	xide				
										Fluo Hydi		n r	arov	ide '	PE	21)	
										Chlo	_	ıιμ	JI UX	iu c I	(r ⊑F	. 1)	
										рН							
										ORF							
																-	general
									T X						trar	sduc	cer
									z	Diss Ozo		u U)	vyge	11			
												ivity	via	mΑ	trar	sduc	er
																	n (default setting)
										- 1							ched to mV, all measured variables selectable
																switc	ched to mA, all measured variables can be selected
											Corr	ecti Nor		aria	nie		
											- 1			ature	e Pt	100/	1000 via terminal (for pH and conductivity)
										- 1	- 1						input (for pH and conductivity)
												_	itrol		ıt		
											- 1	- 1	nor Pau		nn+	rol	
													Sign				
													_	nor	-		
													1				signal output 0/420 mA
																contro	
																	nd 2 limit value relays or 2 timer relays nd 2 solenoid valve relays or 2 timer relays
																	ontrol
															0	none	
															2		umps via pulse frequency
																_	trol characteristic none
																	none P control
																	PID control
																	Language
																	00 No default setting
																	DE German EN English
																	EN English ES Spanish
																	SV Swedish
																	PT Portuguese
																	CN Chinese
																	FR French
																	CZ Czech JP Japanese
																	JP Japanese KR Korean
																	NO Norwegian
																	NL Dutch
																	PL Polish
																	RU Russian
																	TH Thai
																	HU Hungarian

If software default setting U = software default setting is selected, the measured variables pH or ORP can be selected during commissioning. The menu language is automatically requested.

The connection of the measured variable is 5 = mV input for pH/ORP via shield clamp.

With all other options, the default settings (first option) are selected.

The controller with software with default settings can also be ordered with an order number.

Order no. Controller in basic setting D1CbW00601000U01000G0000 1036423

Subsequent activation of functions is possible at any time using an activation key.

This activation key can only be used with the controller with the specified serial number. The activation code can be provided by phone, fax or e-mail and can be simply entered into the control keyboard. The new function is then available and need only be enabled and parametrised.

The following information is essential to obtain the activation code:

- Serial number of the controller (refer to nameplate or operator menu under "General Settings and Informa-
- Current identity code of the controller (refer to operator menu under "General Settings and Information"
- Required identity code

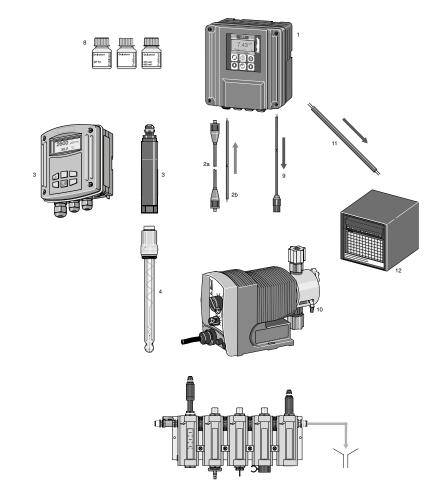
2.3.4 Identity Code Ordering System D1Ub, Subsequent Function Extension for D1Cb

D1Ub	Default - m	ult - measured variable												
	0	Universa	al (choice	of measi	ured v	/ariabl	e upc	n commissioning)						
		Connect	tion of me	n of measured variable										
		1	Standar	andard signal 0/4-20 mA, all measured variables and mV input for pH/ORP (standard)										
			Correcti	tion variable										
			0	None										
			2	Tempe	erature	Pt10	0/Pt1	000 via terminal (for pH and conductivity)						
			4	Manua	al tem	peratu	ıre inp	ut (for pH and conductivity)						
				Contro	ol inpu	ıt								
				0	non	е								
				1		se co								
					Sigr	nal out	put							
					0	none								
					1			e signal output 0/4-20 mA						
						-	er co							
								n and 2 limit value relays or 2 timer relays						
						1		and 2 solenoid valve relays or 2 timer relays						
								ocontrol						
								one						
								pumps via pulse frequency						
								Control characteristic						
								P control						
							2	PID control						
								Language						
								00 No default setting						

Identity Code Ordering System D1Uc, Subsequent Function Extension for 2.3.5 D1Cc

D1Uc	Software of	efaults												
	V	Software	pre-set											
		Default -	measure	d variabl	е									
		0	Universa	l (choice	(choice of measured variable upon commissioning)									
			Connect	ion of m	measured variable									
			1	Standa	dard signal 0/4-20 mA, all measured variables and mV input for pH/ORP (standard)									
				Correc	tion v	ariabl	е							
				0	Non	е								
				2	Tem	perat	ure F	t100	I/Pt1000 via terminal (for pH and conductivity)					
				4	Man	iual te	mpe	ratur	e input (for pH and conductivity)					
					Con	trol in	put							
					0	none	9							
					1	Paus	se cc	ntrol						
						Sign	al ou	tput						
						0	non	е						
						1	1 ar	alog	alogue signal output 0/4-20 mA					
							Pov	ver control						
							G	Alarm and 2 limit value relays or 2 timer relays						
							М	Alarm and 2 solenoid valve relays or 2 timer relays						
								Pump control						
								0 1	none					
									2 pumps via pulse frequency					
								(Control characteristic					
								(None None					
								-	1 P control					
								2	2 PID control					
									Language					
									00 No default setting					

ProMinent


2.3.6

D1Cb and D1Cc Application and Ordering Examples

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water, waste water and the food industry.

Measuring and Control Systems Consist of

- 1 Controller e.g. DACb
- 2a Measuring line e.g. coaxial cable for pH and ORP sensors Pt 100/, Pt 1000
- 2b 2-core measuring line for amperometric sensors with mA signal and transducer
- 3 4 ... 20 mA transducer (for two wire system), DMTa or pH V1
- 4 Sensor, e.g. pH single-rod sensor
- 5 Installation fitting e.g. in-line probe housing type DGMA
- 6 Stopcock for sample water line
- 7 Sample valve
- 8 Buffer solutions (pH/ORP)
- 9 Control cable (control of a metering pump)
- 10 Actuator e.g. Beta® metering pump

Examples for:

- 1 Treatment of swimming pool water
- 2 Monitoring of drinking water
- 3 Monitoring of waste water (pH neutralisation)
- 4 Application examples in the food industry

2.3.7

Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative check with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Qty		Order no.
1	1 channel controller D1Cb, pH	D1CBW00601010VP-
		5010M21EN
1	pH Sensor PHES 112 SE	150702
1	Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106
1	1 channel controller D1Cb, ORP	D1CBW00601010VR-
		5010M21EN
1	ORP Sensor RHES-Pt-SE	150703
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	1005672
1	Bypass fitting BAMa with two PG 13.5 modules and sensor adapter	BAMAEU222XXXF01X000001EN
4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

Benefits

- Simple operation, controller with plain text operator guidance in 20 languages
- Automatically correct pH value and correct disinfectant concentration
- All products are selected to operate correctly with each other

Private swimming pool with measurement and metering of acid and bromine

Task and conditions of use

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and bromine (BCDMH) is used as a disinfectant, that is dissolved and dosed via a bromine sluice. The disinfectant is to be regulated on the basis of a bromine measurement (a comparative calibration using a DPD 1 measuring unit should be carried out at regular intervals, likewise calibration of the pH sensor). The measured values are to be recorded. A DF2a peristaltic pump for pH correction and the solenoid valve of a bromine sluice are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Qty		Order no.
1	1 channel controller D1Cb, pH	D1CBW00601010VP-
		5010M21EN
1	pH Sensor PHES 112 SE	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	1005672
1	1 channel controller D1Cb, bromine	D1CBW00601010VB-
		1010M21EN
1	Bromine sensor BCR 1-mA-10 ppm	1041698
6 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with one PG 13.5 module and one G 1" module and sensor	BAMAEU2211XXF01X000001EN
	adapter	

- Simple operation, controller with plain text operator guidance in 20 languages
- Automatically correct pH value and correct disinfectant concentration
- All products are selected to operate correctly with each other

Private swimming pool with measurement of free chlorine and pH value

Task and conditions of use

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta® 4b metering pumps are to be controlled.

Components of the measuring/control station

Qty		Order no.
1	1 channel controller D1Cb, pH	D1CBW00601010VP-
		5010M21EN
1	pH Sensor PHES 112 SE	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	1005672
1	1 channel controller D1Cb, chlorine	D1CBW00601010VC-
		5010M21EN
1	Chlorine sensor CLE 3-mA 2 ppm	792920
6 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with one PG 13.5 module and one G 1" module and sensor	BAMAEU2211XXF01X000001EN
	adapter	

- Simple operation, controller with plain text operator guidance in 20 languages
- Automatically correct pH value and correct disinfectant concentration
- All products are selected to operate correctly with each other

2.3.8

Application Examples, Potable Water Monitoring

Waterworks with control measurement of chlorine

Task and conditions of use

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A magnetically induced flow meter with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the measuring/control station

Qty		Order no.
1	1 channel controller D1Cb, chlorine	D1CBW00601010VD-
		1010G21EN
1	Chlorine sensor CLE 3-mA-0.5 ppm	792927
4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with one G 1" module and sensor adapter	BAMAEU22X1XXF01X000001EN

Benefits

- Simple operation, controller with plain text operator guidance
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

Legionella prevention in public buildings

Task and conditions of use

The chlorine dioxide and the chlorite concentration are to be monitored and recorded in the fresh water distribution system of a public building for the prevention of legionella. Chlorite is a disinfection by-product of chlorine dioxide that arises if germs have been killed. The chlorite concentration is limited using a limit value of 0.2 mg/l.

Components of the measuring/control station

	Qty		Order no.
ı	1	1 channel controller D1Cb, chlorine dioxide	D1CBW00601010VD-
			1010M21EN
		Chlorine dioxide sensor CDE 2-mA-0.5 ppm	792930
	4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
	1	1 channel controller D1Cb, chlorite	D1CBW00601010VI1010M21EN
	1	Chlorite sensor CLT 1-mA-0.5 ppm	1021596
	1	Bypass fitting BAMa with two G 1" modules and sensor adapter	BAMAEU22X2XXF01X000001EN

- Simple operation, controller with plain text operator guidance
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

Oxidation of well water with hydrogen peroxide

Task and conditions of use

The water drawn from a deep well is to be oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60% the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Qty		Order no.
1	1 channel controller D1Cb, hydrogen peroxide	D1CBW00601010VH-
		1010G21EN
1	Hydrogen peroxide sensor PER 1-mA-2000 ppm	1022510
4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with one G 1" module and sensor adapter	BAMAEU22X1XXF01X000001EN

- Simple operation, controller with plain text operator guidance
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are matched

2.3.9

Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant

Task and conditions of use

In an industrial plant, waste water arises in an intermittent manner (batch production), the water is always acidic (or always alkaline). The water is collected in a storage tank. There is a stirrer in the storage tank, a pH immersion fitting with wet holding cup, based on which the pH value is adjusted. The storage tank discharge connecting piece contains a pH sensor with a pH changeover device, which is used for the final check.

The control is one-way, i.e. acidic or alkaline. There may be solids in the waste water. The measured values are transferred via the 4-20 mA analogue signal.

Components of the pH measuring/control station in the collection tank

Qty		Order no.
1	1 channel controller D1Cb, pH	D1CBW00601010VP-
		5010M21EN
1	pH Sensor PHER 112 SE	1001586
1	Cable combination coaxial 5 m-SN6, shield connection	1024107
1	Pt 100 SE temperature sensor	305063
1	Cable combination of control line 5 m SN6, open end (Pt 100, Pt 1000)	1003208
1	Immersion fitting with 3 sensor slots IPHa 3-PP	1008602
1	Cable combination coaxial 5 m - SN6 - pre-assembled	1008633

Components of the measuring/control station in the outlet

Qty		Order no.
	1 1 channel controller D1Cb, pH	D1CBW00601010VP-
		5010M21EN
	1 pH Sensor PHER 112 SE	1001586
	1 Cable combination coaxial 5 m-SN6, shield connection	1024107
	1 Retractable process assembly WA-PH 1	1020631

Note: other sensors may also be used depending on the quality of the waste water (see selection guide for pH sensors DULCOTEST)

For seriously contaminated waste water with solid matter content

Qty	Order no.
1 pH Sensor PHEX 112 SE	305096

with clear waste water

Qty	Order no.
1 pH Sensor PHEP 112 SE	150041

Renefits

- The waste water pH value is within the specified limit values
- Simple operation, controller with plain text operator guidance in 20 languages
- pH limit value monitoring of drainage water
- All products are selected to operate correctly with each other

2.5 Controller DOLCOWLTER DTCD/DTC

2.3.10

Application Examples in the Food Industry

Bottler disinfection in the beverage industry

Task and conditions of use

Continuous disinfection of the filler with disinfection solution means this sensitive part of the bottling process is reliably sterilised. Continuous spraying with disinfectant solution means high hygiene requirements are fulfilled.

The disinfectant solution comprises water with additional chlorine dioxide. The concentration of the chlorine dioxide is measured and set to the desired value using the DACb controller. From time to time the chlorine dioxide concentration must be increased.

An alternative parameter set can be activated in the DACb via a switch input. In this way, a switchover, regularly required, can be carried out smoothly without the need for continual adaptation of the setpoint in the controller menu.

The measured data is to be recorded.

Components of the measuring/control station

Qty		Order no.
1	1 channel controller D1Cb, chlorine	D1CBW00601010VD-
		1010G21EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	1033393
10 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with one G 1" module and sensor adapter	BAMAEU22X1XXF01X000001EN

Benefits

- Hygienic trouble-free bottling
- Simple operation, controller with plain text operator guidance in 20 languages
- All products are selected to be fully compatible

Irrigation water disinfection for useful plants

Task and conditions of use

The irrigation water from e.g. salad seedlings is drawn from a well. The water could be contaminated with germs which could harm the salad seedlings. To prevent this, the irrigation water is disinfected using chlorine dioxide. The irrigation water requirement is always constant.

The irrigation water may contain suspended matter.

Components of the measuring/control station

Qty		Order no.
1	1 channel controller D1Cb, chlorine	D1CBW00601010VD-
		1010G21EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	1033393
10 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
1	Bypass fitting BAMa with one G 1" module and sensor adapter	BAMAEU22X1XXF01X000001EN

- Irrigation water does not harm the seedlings
- Simple operation, controller with plain text operator guidance in 20 languages
- Switchover of control parameters via an external potential-free contact
- All products are selected to operate correctly with each other

2.4.1

Controller DULCOMETER Compact

Compact yet fully equipped - the basic water analysis unit

As a controller in water analysis, the DULCOMETER Compact is the correct controller for control tasks that require only a 1 way control.

The DULCOMETER Compact controller is a one-channel PID controller for the measured variables pH, ORP, chlorine and inductive conductivity. It can monodirectionally control the measured variable, monitor limit values and transmit the measured value via an mA output, e.g. to a PLC. The mA output can optionally also be configured as a controlled variable output. The controller has one pulse frequency output to control one metering pump. One output relay can optionally be used as an alarm or limit value or to control motor-driven metering pumps or solenoid valves. A digital input is used to switch off the control or to process a sample water limit contact by remote control. The impact of temperature on the measurements can be provided by temperature measurement or by manual input. Menu-driven operation is language-independent.

Your Benefits

- Flexibility in the choice of measured variable for pH and ORP
- Always the optimum measured value resolution by using auto-ranging with the conductivity measurement
- Depending on the requirement, various display options for conductivity, such as: conductivity, TDS (Total Dissolved Solids), salinity and specific resistance
- Safety thanks to sensor monitoring with pH for glass breakage and line breakage
- VARIOus installation options: wall-mounted, installation on an upright or in a control cabinet

Technical Details

- Measured variables: pH, ORP, chlorine, conductive and inductive conductivity
- Method of installation, degree of protection: Combination housing (wall mounting, control panel mounting, pillar assembly) IP 67, control panel IP 54
- Measurement: 1 measuring channel, temperature compensation for conductivity and pH
- Control: PID controller, monodirectional controller (e.g. with pH acid or alkali)
- Control inputs: 1 digital control input

Field of Application

- Measurement and control of water parameters in industrial and process water treatment plants
- Permeate monitoring in reverse osmosis systems
- Measurement and control of the hygiene parameters in swimming pools

Technical Data

Measuring range pH: 0 ... 14

ORP: -1000 ... +1000 mV

Chlorine: 0.05 ... 5 ppm, shock metering up to 10 ppm, max. 12 h with chlorine sensors CLB 2-µA-5 ppm and

CLB 3-µA-5 ppm

Conductive conductivity: 0.5 µS/cm ... 20 mS/cm

(auto-ranging)

Inductive conductivity with ICT 2: 20 $\mu\text{S/cm}$... 2000

mS/cm (auto-ranging)

Inductive conductivity with ICT 5: 200 µS/cm ... 2000

mS/cm (auto-ranging)

Resolution pH: 0.01 pH

ORP: 1 mV

Chlorine: 0.01 ppm

Conductivity: $0.1~\mu\text{S/cm}$ (depends on the measuring

Accuracy 0.5% of the upper range value

Temperature compensation range 0 ... 120 °C, chlorine 1 ... 45 °C Control Monodirectional PID control with selectable control

direction

Inputs Sensor input for the relevant measured variable

Temperature sensor input: pH: Pt 1000, chlorine and

conductivity: Pt 100/ Pt 1000

1 digital input as a remote control input for the pause

control / sample water fault functions

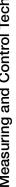
Outputs 1 pulse frequency output for controlling metering pumps

1 active 0/4...20 mA output configurable as a measured

or control variable, max. load: 400 Ω

1 output relay used as a changeover contact, can be configured as an alarm, limit value or pulse width-modulated control output for motor-driven metering pumps

0.05 ... 12.0 cm⁻¹


100 ... 230 V, 50/60 Hz, 5 W Voltage supply

Permissible operating temperature -10 ... +60 °C

IP 67, based on NEMA 4 X Indoor **Enclosure rating Dimensions** 135 x 125 x 75 mm (H x W x D)

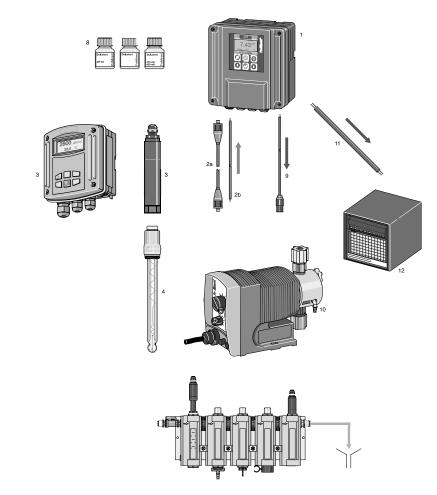
Weight 0.5 kg

Cell constant, conductive conductivity

2.4.2	2			lden	tity	, Cc	ode	Ordering System for DULCOMETER Compact		
DCCa	Type of mounting									
Βοσα	W Wall/pipe mounting IP 67									
	S		itting kit for control panel mounting IP 54							
		Version								
		00	With Pro							
			Operatin	ng voltage						
			6	90 2						
				Measu						
				C0 PR		e chlo		ob ALIA		
				L3				chable) onductivity (unit designation: COND_C)		
				L6				ductivity (unit designation: COND_I)		
								ension		
					0	Non	е			
İ				İ	2	SN	6 inp	ut for pH/ORP		
						App				
						01		(Standard)		
						ļ		none		
						ŀ	0	Documentation language		
								DE German		
						Ì		EN English		
						İ		ES Spanish		
								IT Italian		
				ļ				FR French		
						ļ		FI Finnish		
						1		BG Bulgarian CN Chinese		
				•				CZ Czech		
								GRI Greek		
								HUl Hungarian		
						İ		JP Japanese		
				İ		İ		KR Korean		
								LT Lithuanian		
								LV Latvian		
								NL Dutch		
								PL Polish PT Portuguese		
								PT Portuguese RO Romanian		
								RU Russian		
								SE Swedish		
								SK Slovakian		
								SI Slovenian		
								SV Swedish		
								TH Thai		

Accessories

	Order no.	
Cable combination, coaxial, Ø 5 mm 0.8 m - SN6 - pre-assembled	1024105	
Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106	
Cable combination, coaxial, Ø 5 mm 5 m - SN6 - pre-assembled	1024107	
SN6 coaxial connector, retrofit component, D1Cb, DAC, DCCa	1036885	
Assembly set for installation in control cabinet	1037273	


2.4.3

Application and Ordering Examples for DULCOMETER Compact

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water, waste water and the food industry.

Measuring and Control Systems Consist of

- Controller e.g. DACb
- 2a Measuring line e.g. coaxial cable for pH and ORP sensors Pt 100/, Pt 1000
- 2b 2-core measuring line for amperometric sensors with mA signal and transducer
- 3 4 ... 20 mA transducer (for two wire system), DMTa or pH V1
- 4 Sensor, e.g. pH single-rod sensor
- 5 Installation fitting e.g. in-line probe housing type DGMA
- Stopcock for sample water line
- 7 Sample valve
- 8 Buffer solutions (pH/ORP)
- 9 Control cable (control of a metering pump)
- 10 Actuator e.g. Beta® metering pump

Examples for:

- 1 Treatment of swimming pool water
- 2 Monitoring of drinking water
- 3 Monitoring of waste water (pH neutralisation)

2.4.4

Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative check with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Qty		Order no.
1	Compact controller for pH	DCCaW006PR0010EN
1	pH Sensor PHES 112 SE	150702
1	Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106
1	Compact controller for ORP	DCCaW006PR0010EN
1	ORP Sensor RHES-Pt-SE	150703
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	1005672
1	Bypass fitting BAMa with two PG 13.5 modules and sensor adapter	BAMAEU222XXXF01X000001EN
4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

Benefits

- Operation is simple and independent of the operating language
- Automatically correct pH value and correct concentration of disinfectant
- All products are matched

Private swimming pool with measurement of free chlorine and pH value

Task and conditions of use

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta® 4b metering pumps are to be controlled.

Components of the measuring/control station

Qty		Order no.	
1	Compact controller for pH	DCCaW006PR0010EN	
1	pH Sensor PHES 112 SE	150702	
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	1005672	
1	Compact controller for chlorine	DCCaW006C00010EN	
1	Sensor for free chlorine CLB 2-µA-5 ppm	1038902	
1	Bypass fitting BAMa with one PG 13.5 module and one G 1" module and sensor adapter	BAMAEU2211XXF01X000001EN	
1 m	•	725122	
4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	123122	

- Operation is simple and independent of the operating language
- Automatically correct pH value and correct concentration of disinfectant
- All products are selected to be fully compatible

2.4.5

Application Examples, Potable Water Monitoring

Waterworks with control measurement of chlorine and pH

Tasks and applications

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A magnetically induced flow meter with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the chlorine measuring/control station

Qty	Order no.
1 Compact controller for chlorine	DCCaW006C00010EN
1 Sensor for free chlorine CLB 2-μA-5 ppm	1038902
1 Bypass fitting BAMa with one PG 13.5 module and sensor adapter	BAMAEU221XXXF01X000001EN
2 m Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

Components of the pH measuring/control station

Qty		Order no.
1	Compact controller for pH	DCCaW006PR0010EN
1	pH Sensor PHEP 112 SE	150041
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	1005672
1	Bypass fitting BAMa with one PG 13.5 module and sensor adapter	BAMAEU221XXXF01X000001EN
2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

Benefits

- Operation is simple and independent of the operating language
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

Waterworks with control measurement of conductivity

Task and conditions of use

The conductive conductivity in the outlet of a water works is to be monitored. The measured value is to be transmitted to a PLC via a 4-20 mA analogue signal.

Components of the measuring/control station

Qty		Order no.
1	Compact controller for conductive conductivity	DCCaW006L30010DE
1	Conductivity sensor measuring range 20 mS/cm, type LFTK 1	1002822
1	Screened sensor cable LF, 5 m	1046026
1	Bypass fitting BAMa with one PG 13.5 module and sensor adapter	BAMAEU221XXXF01X000001EN
2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

- Simple operation, controller with plain text operator guidance
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

2.4.6

Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant

Task and conditions of use

In an industrial plant, waste water arises in an intermittent manner (batch production), the water is always acidic (or always alkaline). The water is collected in a storage tank. There is a stirrer in the storage tank, a pH immersion fitting with wet holding cup, based on which the pH value is adjusted. The storage tank discharge connecting piece contains a pH sensor with a pH changeover device, which is used for the final check.

The control is one-way, i.e. acidic or alkaline. There may be solids in the waste water. The measured values are transferred via the 4-20 mA analogue signal.

Components of the pH measuring/control station in the collection tank

Qty	Order no.
1 Compact controller for pH	DCCaW006PR0010EN
1 pH Sensor PHER 112 SE	1001586
1 Cable combination coaxial 5 m-SN6, shield connection	1024107
1 Pt 1000 Temperature sensor	1002856
1 Cable combination of control line 5 m SN6, open end (Pt 100, Pt 1000)	1003208
1 Immersion fitting with 3 sensor slots IPHa 3-PP	1008602

Components of the measuring/control station in the outlet

Qty	Order no.
1 Compact controller for pH	DCCaW006PR0010EN
1 pH Sensor PHER 112 SE	1001586
1 Cable combination coaxial 5 m-SN6, shield connection	1024107
1 Retractable process assembly WA-PH 1	1020631

Note: other sensors may also be used depending on the quality of the waste water (see selection guide for pH sensors DULCOTEST)

For seriously contaminated waste water with solid matter content

Qty	Order no.
1 pH Sensor PHEX 112 SE	305096
with clear waste water	

_Qty	Order no.	
1 pH Sensor PHEP 112 SE	150041	

Ranafite

- Operation is simple and independent of the operating language
- pH limit value monitoring for the waste water
- All products are matched

2.5.1 Measuring and Control System DULCOMARIN 3

New features and functions - one big step for DULCOMARIN, one gigantic step for your pool system.

The measuring and control system DULCOMARIN 3 is your digital link to the technology of the future. It controls the entire range of swimming pools - from adventure pools to private pools. The system is operated using the large 7" touch display.

The measuring and control system DULCOMARIN 3 is a reliable system for the treatment of swimming pool

The intuitive menu navigation is also supported by videos and shows step-by-step calibration of the sensors.

It is operated using the system's touch display. You can also operate the DULCOMARIN 3 remotely online. This connects you to your DULCOMARIN 3 using your smartphone or any other Internet-compatible end device (VNC app needed). You can therefore also control other features, lighting, circulating pumps and filter backwash. The system can be extended at any time to meet future requirements.

The circulation capacity of the pumps adapts to the water quality in Eco! operating mode. Chemicals are metered precisely depending on demand based on the measured values, reducing ongoing energy costs and saving chemicals.

The DULCOMARIN 3 Global Unit is the central element of the measuring and control system. All information relating to the individual pools and associated control circuits is collated here. Use the DULCOMARIN 3 Compact version for one filtration circuit, and the Global Unit, which can display up to 16 Local Units, for multi-pool systems with up to 16 filtration circuits. Networking is provided by the LAN-based cNet.

DULCOMARIN 3 has the following communication options as standard:

- Modbus RTU
- OPC UA
- BACnet IP
- Web interface
- VNC server

A gateway to Profinet is available as an option.

Availabilities:

- DULCOMARIN 3 Compact Unit for controlling one filtration circuit
- DULCOMARIN 3 Multipool Global Unit with up to 16 Local Units for controlling up to 16 filtration circuits
- DULCOMARIN 3 as a substitute for DULCOMARIN II central units
- Functional module (F-module) for controlling the entire water circulation system
- Module for controlling chlorine gas metering devices (R-module)
- Gateway to Profinet (optional)
- Standard web interface, older systems can be easily updated free of charge

DULCOMARIN 3 includes Open Source Software (OSS). We are obliged by the LINUX Foundation to publish the associated contractual working and source codes. You can access this data by copying the following link into your browser's address bar and pressing Enter: https://www.prominent.com/oss. The data is not executable files. It is only published to fulfil our obligation.

Your Benefits

- Energy- and cost-efficient control of your swimming pool
- The DULCOMARIN 3 can be accessed from any Internet-compatible device (web browser and VNC app needed)
- Simple calibration of the sensors with video support
- Status messages and alarms issued by e-mail
- View and assess the time-based curve of the measured values of all pools on the integrated screen plotter
- Simple, unrestricted LAN connection like in your home network
- Scope for upgrading at a later date by means of the ProMinent internal cNet bus system.
- Intelligent chlorine sensors: save the sensor data and are always in the optimum measuring range thanks to auto-ranging
- Intelligent metering pumps: provide information on operating parameters, such as chemical level statuses and pump capacity, within the range of 0.7 l/h to 1000 l/h
- A wealth of communication options by means of
 - Modbus RTU
 - OPC UA
 - BACnet IP
 - Web interface
 - VNC server
 - A gateway to Profinet is available as an option
- View historical measured data directly on the controller: thanks to the integral screen plotter with data logger via USB
- Now with optional conductive conductivity measurement. Compatible with all ProMinent conductivity sensors, e.g. LFTK 1 DE
- Optional 2-channel mA input, e.g. to measure turbidity

Technical Details

- Measured variables: pH, ORP, free chlorine, total chlorine, combined chlorine and temperature
- Precision: 0.3 % of the measuring range limit value
- Control characteristic: P/PI/PID control
- Digital inputs: 8 potential-free control inputs e.g. for sample water errors, pause control, parameter switchover
- Modular slots: 4 to accommodate 2-channel I/O modules in each, selectable via identity code and retrofittable
- Pump relay (pulse frequency): 4
- Output relay: 3 potential-free changeover contacts, 3 changeover contacts with power supply, voltage-switching
- All output relays can be replaced
- Signal current output: via 2-channel I/O modules 2 x 0/4-20 mA or 4 x 0/4-20 mA
- Interfaces: USB, LAN (Ethernet), Wi-Fi
- Supply voltage: 100 230 V, 50/60 Hz, optional 24 V DC
- Dimensions: 430 x 290 x 150 mm (L x W x H)

Field of Application

- Regulation and control of the entire swimming pool
- Water parks
- Public swimming pools
- High-end private pool

What is Eco! Mode operating mode?

Eco!Mode permits the circulation capacity to be lowered when the DIN hygiene parameters of pH, ORP, free and combined chlorine are within the permitted limits. A circulating pump with frequency converter and analogue input is needed for this. The reduction can be activated via a remote control input, dependent on the DIN hygiene parameters being observed, the time and appropriate activation. A combination of criteria is also possible. If the DIN hygiene parameters are no longer being observed, then the circulation capacity is increased again to nominal capacity. Reducing pump capacity saves energy and, in so doing, reduces CO_2 emissions. If the DIN hygiene parameters are no longer being observed, then chlorine metering is again increased to the normal setpoint.

What is a web server?

A web server interface is a software application, which runs in the DULCOMARIN 3 processor and is fitted in the controller as standard. The web server provides web pages which are an exact match of the DULCOMARIN 3 menus. So it's exactly the same as operating on-site on the controller itself.

The web server allows the DULCOMARIN 3 to be visualised with ease without special visualisation software being required on the PC. The web server is completely independent of the PC/tablet operating system, just the installed web browser is needed.

The DULCOMARIN 3 can be connected with a network or PC via a LAN/Ethernet interface. Connecting via the in-built Wi-Fi is possible as an option.

Standard network components from appropriate retailers can be used as accessories for cabling, router, Wi-Fi etc.

The same information can be accessed via the web server as on the DULCOMARIN 3 itself, e.g. viewing and changing setpoints of all measurement and control variables, adapting alarm thresholds, viewing screen plotters. The processes for adapting the bus configuration and setting up users can only be undertaken directly on the controller itself or via a VNC viewer.

The web server runs in parallel with the VNC viewer and Modbus RTU.

What is a VNC viewer?

VNC stands for Virtual Network Computing and is a way of remotely controlling the DULCOMARIN 3 controller via a PC with a Windows operating systemor via a tablet/smartphone with Android or IOS.

The person with remote control sees what the local operator is operating and vice versa. This means that help and support can be easily provided remotely. The DULCOMARIN 3 needs to be accessible via the Internet. VNC programs are available to download from the app stores provided by the above mentioned operating system providers e.g.:

https://www.realvnc.com/de/connect/download/vnc/

What is cNet?

The cNet is a LAN-based, ProMinent-specific network, which connects one Global Unit and up to 16 Local Units. The cNet may not be connected to an existing LAN network. For cNet networking, you need 1 LAN connecting cable M12 - RJ45 5.0 m and 1 LAN coupling IP 68 per device (included in scope of delivery). All other LAN connections are established using conventional commercially available LAN cables and LAN switches. One LAN switch is needed per 100 metres.

One Global Unit and 4 Local Units can be connected to the 5-port LAN switch provided. CANopen specifications observed by all devices:

In terms of hardware, all devices comply with the harmonised CAN specification 2.0 (ISO99 - 1, ISO99 - 2). This includes the CAN protocol (ISO 11898 - 1) and details on the physical layer in compliance with ISO 11898 - 2 (high speed CAN up to 1 Mbit/sec) and ISO 11898 - 3 (low speed CAN up to 125 kBit/sec). The device complies with the CAN-Open specification CIA-DS401 that forms the basis of the European standard EN50325 - 4. It also complies with the controller device profile CiA-404.

Accessories for the DULCOMARIN 3 Measuring and Control System

General Accessories

	Order no.	
PHES 112 SE	150702	
RHES-Pt-SE	150703	
Cable combination, coaxial, Ø 5 mm 0.8 m - SN6 - pre-assembled	1024105	
Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106	
Cable combination, coaxial, Ø 5 mm 5 m - SN6 - pre-assembled	1024107	
Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122	

Accessories for LAN and cNet Cabling

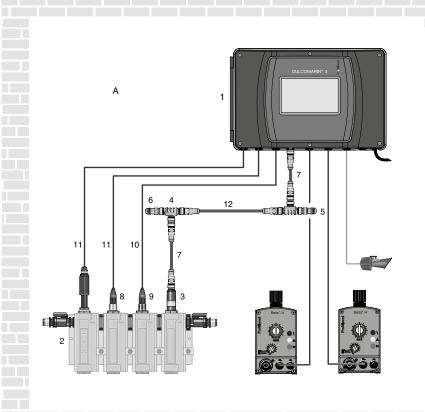
	Order no.	
Connecting cable LAN M12 - RJ45 5.0 m	1026715	
Connecting cable LAN M12 - RJ45 10.0 m	1026716	
LAN coupling IP 68	1104183	
TP-LINK TL-SG108 V4 network switch 8 port	1109816	
Industrial 5-port LAN switch (for one Global Unit and 4 Local Units)	734799	
Plug power unit 24 VDC for LAN switch	1083061	
LAN cable cat. 5, 10 m grey	1109856	
LAN cable cat. 5, 25 m grey	1109857	
LAN cable cat. 5, 50 m grey	1109858	

Accessories for CANbus Cabling

	Order no.
T-distributor M12 5 pole CAN	1022155
Termination resistor M12 plug	1022592
Connecting cable - CAN M12 5 pole 0.3 m	1024568
Connecting cable - CAN M12 5-pole 0.5 m	1022137
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin. 10 m	1046383
Connecting cable - CAN M12 5-pole 25 m	1055588
Connecting cable - CAN M12 5-pole 50 m	1055589

Important:

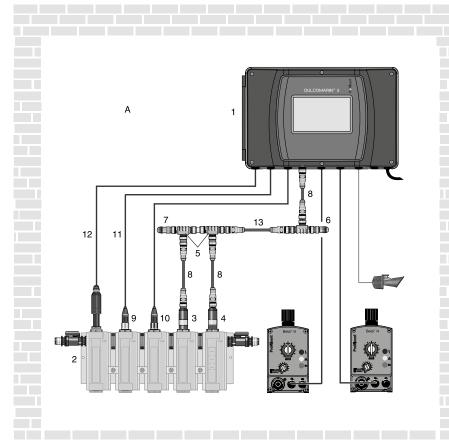
Do not allow the maximum CAN bus length (excluding branch lines) to exceed 400 m! The length of the LAN cable between the DULCOMARIN 3 and a LAN switch may not exceed 100 m. Then a LAN switch needs to be refitted. There is no limit to the length of the cable if this rule is observed.


2.5.2

Configuration Examples for the Measuring and Control System DULCOMARIN 3

Configuration example: 1-pool system

The example shown of a measuring and control system for pH, ORP, free chlorine and temperature for a filtration circuit consists of the following components (no metering technology):


Pos.	. Qty	Name	Order no.	
1	1	DULCOMARIN 3 Compact for 1 pool	DCPAEUWPMA6L001XX-	
			EN01	
2	1	Bypass armature BAMa with two PG 13.5 mod-	BAMAEU2221XXF01X-	
		ules and one G 1" module and sensor adapter	00000DE	
3	1	Chlorine sensor CGE 3-CAN-10 ppm	1047977	
4	3	T-distributor M12 5 pol. CAN	1022155	
5	1	Termination resistor M12 coupling	1022154	
6	1	Termination resistor M12 plug	1022592	
7	2	Connecting cable - CAN M12 5-pole 0.5 m	1022137	
8	1	pH Sensor PHES 112 SE	150702	
9	1	ORP Sensor RHES-Pt-SE	150703	
10	2	Cable combination, coaxial, Ø 5 mm 2 m - SN6 -	1024106	
		pre-assembled		
11	2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122	
12	1	Connecting cable - CAN M12 5-pole 25 m	1055588	
12	1	Connecting cable - CAN M12 5-pole 50 m	1055589	
12	1	Connecting cable - CAN, sold by the metre	1022160	

Plant room

2.5 Measuring and Control System DULCOMARIN 3 for Water Treatment in Public Swimming Pools

Configuration example: 1-pool system

The example shown of a measuring and control system for pH, ORP, free and combined chlorine and temperature for a filtration circuit consists of the following components (no metering technology):

Pos.	. Qty	Name	Order no.	
1	1	DULCOMARIN 3 Compact for 1 pool	DCPAEUWPMA6L001XX-	
			EN01	
2	1	Bypass fitting BAMa with two PG 13.5 modules	BAMAEU2222XXF01X-	
		and two G 1" modules and sensor adapter	000001EN	
3	1	Chlorine sensor CTE 1-CAN-10 ppm	1023427	
4	1	Chlorine sensor CGE 3-CAN-10 ppm	1047977	
5	3	T-distributor M12 5 pol. CAN	1022155	
6	1	Termination resistor M12 coupling	1022154	
7	1	Termination resistor M12 plug	1022592	
8	3	Connecting cable - CAN M12 5-pole 0.5 m	1022137	
9	1	pH Sensor PHES 112 SE	150702	
10	1	ORP Sensor RHES-Pt-SE	150703	
11	2	Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled	1024106	
12	2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122	
13	1	Connecting cable - CAN M12 5-pole 25 m	1055588	
13	1	Connecting cable - CAN M12 5-pole 50 m	1055589	
13	1	Connecting cable - CAN, sold by the metre	1022160	

Configuration example: Multipool system

The Multipool system differs only in terms of the identity code of the controllers:

The Global Unit (there needs to be one yet there may only be one). The Global Unit itself can control a filtration circuit or act as a pure operating unit in the pool caretaker's office:

Example

Global Unit with measuring and control function for one filtration circuit:

DCPAEUWPMGA6W100001XXDE01

Global Unit in the pool caretaker's office, without measuring and control function:

DCPAEUWPMGA6W000001XXDE01

Local Unit: there can be up to 16, but it does not support Wi-Fi:

DCPAEUWPMHA60100001XXDE01

The following is needed to network the controllers to each other:

	Order no.	
Connecting cable LAN M12 - RJ45 5.0 m	1026715	
LAN coupling IP 68	1104183	
Industrial 5-port LAN switch (for one Global Unit and 4 Local Units)	734799	
Plug power unit 24 VDC for LAN switch	1083061	

To be provided by the customer

Specification for the LAN switch

Network switch 100 to 2000 MBit/s, screened RJ-45 ports, metal housing, optimised for data traffic, e.g. TP link TL-SG108 V3 8. The switch must not be a managed switch!

Specification for the LAN cable

- CAT 5 or higher specification, at least 100 Mbit/s data rate
- Maximum length to LAN switch: 100 m
- You can opt for a fibreglass connection for longer lengths

The DULCOMARIN 3 Compact and Multipool systems differ only by the identity code of the controllers.

What is a DULCOMARIN 3 Compact Unit?

DULCOMARIN 3 Compact is intended for controlling a filtration circuit. It can measure and regulate the pH, ORP, free chlorine, combined chlorine, total available chlorine and temperature measured variables. The controller is usually installed in the plant room. To ensure that you can monitor all values at all times, the unit can be fully operated using a PC with VNC viewer, which is located in the pool caretaker's office. The connection is either via the standard LAN or optional Wi-Fi. Conventional LAN-Office components can be used. A VNC viewer needs to be installed on the terminal device (e.g. PC). A LAN connecting cable M12 - RJ45 is needed to connect to a LAN network or PC. With a DULCOMARIN with software version 01.00.10.00 or later the operating mode can be freely adjusted between Compact, Global and Local Unit.

What is a DULCOMARIN 3 Multipool Global Unit?

A DULCOMARIN 3 Multipool system consists of a Global Unit with a 7" touch display. It could be described as the central control unit via which all controllers of all pools, the Local Units, can be operated in full. There needs to be one Global Unit installed in each system yet there may only be one. It can control a filtration circuit or act as a pure operating panel in the pool caretaker's office. If the Global Unit itself controls a filtration circuit, i.e. it is located in the plant room, then it can be fully operated using a PC or tablet PC with a VNC viewer, located in the pool caretaker's office. The connection is either via the standard LAN or optional Wi-Fi. Conventional LAN-Office components can be used. A web browser or VNC viewer needs to be installed on the terminal device (e.g. PC). A LAN connecting cable M12 - RJ45 is needed to connect to a LAN network or PC. The Global Unit can also optionally be equipped with Wi-Fi. Full operability is then possible using a web browser and VNC viewer. A ProMinent-specific LAN-based cNet connector is available for networking with the Local Units. A LAN connecting cable M12 - RJ45 is needed for this. The cNet may not be connected to existing LAN networks.

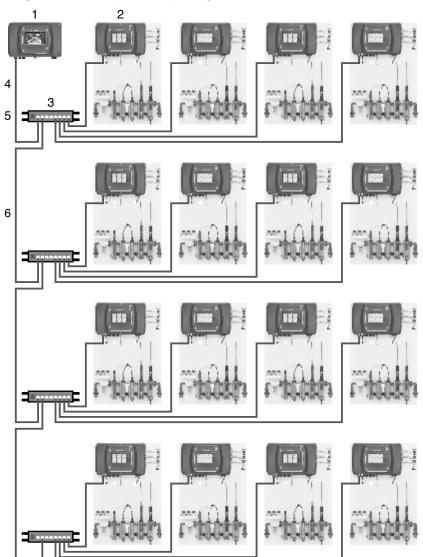
What is a DULCOMARIN 3 Multipool Local Unit?

A DULCOMARIN 3 Multipool system can control up to 16 filtration circuits, i.e. 16 Local Units with a 7" touch display are needed. The controller can be used to operate the local pool. Every Local Unit controls one filtra-

Global unit
Up to 16 local units

port switch

- RJ45 5.0 m LAN coupling IP68 Customer's LAN cable, up to 100 m in length


LAN switch, e.g. TP-link 8

Connecting cable LAN M12

2.5 Measuring and Control System DULCOMARIN 3 for Water Treatment in Public Swimming Pools

tion circuit. They are connected to the Global Unit via cNet. A LAN connecting cable M12 - RJ45 cable and a LAN coupling IP 68 are needed for this. Conventional LAN cables and LAN switches can be used for the connection from the LAN coupling onwards.

Configuration example: Multipool system

Global Unit with measuring and control function for one filtration circuit:

Identity code: DCPAEUWPM GA 6W 1 00001XXDE01

Or as a pre-assembled measuring and control station with sensors and optional metering pumps:

Identity code: DSPAPD80 **GW** A00D000010

Global Unit in the pool caretaker's office, without measuring and control function:

Identity code: DCPAEUWPM GA 6W 0 00001XXDE01

There may be up to 16 Local Units, but it does not support Wi-Fi:

Identity code: DCPAEUWPMHA60100001XXDE01

Or as a pre-assembled measuring and control station with sensors and optional metering pumps:

Identity code: DSPAPD80 H0 A00D000010

Technical specifications if provided by the customer

LAN switches

Network switch 100 to 2000 MBit/s, screened RJ-45 ports, metal housing, optimised for data traffic, e.g. TP link TL-SG108 V3 8. The switch must not be a managed switch!

CAT 5 or higher specification, at least 100 Mbit/s data rate

Maximum length to LAN switch: 100 m

You can opt for a conventional fibreglass connection with longer lengths

2.5.3 Identity Code Ordering System DULCOMARIN 3 Regional design Europe (Standard) Type of mounting Wall mounting Version ProMinent PM Function Compact Unit, 1 filter circuit G Multipool, Global Unit, cNet, there needs to be one global unit in a system Н Multipool, Local Unit, cNet, there can be up to 16 local units R Replacement central unit for DULCOMARIN II, along with: M, A, P, N, R, F, I modules 7" touch operation Supply voltage 24 V DC 100... 230 V, 50-60 Hz Communication LAN with VNC server (please order LAN cable separately) W WLAN with VNC server Module slot 1 No module Module 2 x mV/temperature (inputs pH/ORP) Module slot 2 No module 2-channel mA input Module 2 x mA outputs (measured value/control) Module slot 3 Module 2 x mA outputs (measured value/control) 1-channel conductive conductivity measurement Expansion level 4 / module slot 4 No module Module 2 x mA outputs (measured value/control) Software packages 01 P1 standard with VNC, email, data logger, etc Smart Control XX none Operating Instructions XX None DF German EN English French Spanish Italian BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian ΙFΙ Finnish GR Greek HU Hungarian Japanese KR Korean lΤ Lithuanian lιν Latvian NL Dutch PL Polish РТ Portuguese RO Romanian SE Swedish Slovakian SL Slovenian RURussian TH Thai TR Turkish Approvals 01 CE 03 CE + EAC 07 MET (USA) 08 CE + MET (Europe) 14 CE + UKCA

2.5.4 Functional Module (F-module) for DULCOMARIN 3

Swimming pool water - everything at a glance

With the function module (F module) of the DULCOMARIN 3 controller, you can conveniently control the water circuit of your swimming pool. You save energy, chemicals and the water quality remains high.

Together with the DULCOMARIN 3, the functional module (F-module) controls the water circuit of your swimming pool and is connected to a compact unit via CAN bus.

The compact unit clearly visualises the water circuit and documents the supply of fresh water.

The circulation capacity of the circulating pumps adapts to the water quality in Eco!Mode operating mode, thereby reducing ongoing energy costs and saving chemicals.

Your Benefits

- Visualisation of the entire system via the 7" display on the controller, the web server and VNC viewer
- Activation of Eco!Mode to reduce the rate of circulation in line with water quality
- Overview of the daily volume of fresh water
- Control of the swimming pool's water circuit

Technical Details

The following functions are possible with the F-module:

Control

Circulation operation for one or two parallel circulating pumps and one or two parallel filters, automatic backflushing (control of a rod valve), primary filtrate (control of a rod valve), internal circuit, electric return shut-off valve, lowering of the water level in idling mode

Measure

Flow control of circulation, water level check, sample water valve, flow monitor, recording of current circulating flow, recording of fresh water top-up, lifting system, error and water alarm (cellar)

Wellness

Pool water heating function, heating control, solar heating, JetStream, flood/neck shower, massage nozzle, underwater light

Clean

Guttering cleaning function, popular attractions, open/close pool cover

Communication

Incorporating up to 2 F-modules per filter circuit, connection between DULCOMARIN 3 and F-module via CAN bus

Inputs and outputs:

- 6 feeding output relays
- 1 alarm relay
- 2 analogue outputs for controlling frequency converters
- 5 digital control inputs, e.g. for level monitoring of raw water tank, flow control, contact water meter for monitoring circulation and fresh water supply

Supply voltage: 100 - 240 V, 50/60 Hz

Power consumption: Depends on connected consumers, see installation and operating instructions, DULCOMARIN 3 function extension with F-module.

Identity code: DCPAEUWPMXD60Y000XXXXDE01

2.5.5 Web

Webcam Function for DULCOMARIN 3

See more with the webcam function for DULCOMARIN 3: swimming pool control from anywhere

The webcam function for DULCOMARIN 3 makes swimming pool control even easier: you can see your pool comfortably on your PC or mobile device.

Using the new web cam function, you can conveniently see your pool on the DULCOMARIN 3 display and via the web browser on your PC or mobile device.

The web cam for DULCOMARIN 3 runs in conjunction with the F-module. It is pre-configured and is connected via the cNet port. Being of protection class IP 67, the web cam can be used indoors and outdoors.

Technical Details

Included in the scope of delivery:

- Web cam
- Power supply 230V / 12 V DC / 1 A
- 1 m network cable
- Drilling template
- Mounting materials
- Instructions

	Order no.
Web cam for DULCOMARIN 3	1113164

Accessories

	Order no.
Connecting cable LAN M12 - RJ45 5.0 m	1026715
LAN coupling IP 68	1104183
LAN cable cat. 5, 10 m grey	1109856
LAN cable cat. 5, 25 m grey	1109857
LAN cable cat. 5, 50 m grey	1109858

2.5.6 Modbus RTU Gateway for PROFINET for DULCOMARIN 3

Simple connection of DULCOMARIN 3 to programmable logic controllers

The Modbus RTU to Profinet gateway makes swimming pool control simple. Data from up to 16 pools is transmitted to a central PLC.

The new gateway Modbus RTU for Profinet makes simple connections and communication between DULCOMARIN 3 and a programmable logic controller (PLC) possible via Profinet. Data for up to 16 swimming pools can then be transferred to one central PLC.

Your Benefits

- All DULCOMARIN 3 measurement data is contained in the Profinet protocol
- Setting setpoints and switching over to Eco! Mode via Profinet
- Simple commissioning thanks to preconfigured module
- A sample project that works with the Siemens TIA Portal is available to download

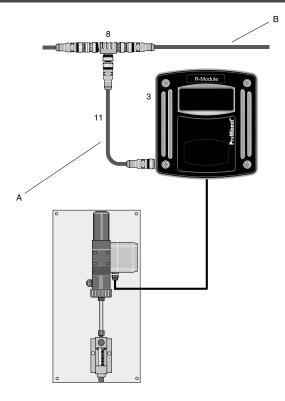
Technical Details

- Supply voltage: 24 V DC ± 6 V (provided on site)
- Power consumption: 24 V, max. 130 mA
- Reverse polarity protection
- Connection on Modbus RTU side: D-Sub plug, 9-pin (cable included in the scope of delivery)
- Connection on Profinet side: RJ45 (a Profinet cable is not included in the scope of delivery)
- Ambient temperature (operation), 0 to + 60 °C
- Mounting type: DIN rail, DIN EN 60715
- Dimensions (L x W x H): 100 x 52 x 70 mm (not including plug)
- Weight: approx. 150 g
- Degree of protection: IP 20

Included in the scope of delivery:

- Gateway, pre-configured
- 10 m connecting cable from DULCOMARIN 3 to gateway
- GSDML file in download

Order no.


Gateway between Modbus RTU and Profinet

1117191

2.5.7 Control Module for Chlorine Gas Metering Devices (R Module)

- A Branch line
- B Main bus cable

The R module permits control of chlorine gas metering devices, which have a response signal potentiometer.

It includes 2 output relays for opening and closing and one input for a 1 \dots 10 k Ω response signal potentiometer.

The R module is connected to the other units via the main bus cable

using the T-distributor and 0.5 m CAN connection cable supplied.

The R module in the above example consists of the following components (not including the chlorine gas metering device):

Pos.	Qty	Name	Order no.
3	1	R module DXMa R W 2 0 00 01	DXMARW200001
8	1	T-distributor M12 5 pol. CAN	1022155
11	1	Connecting cable - CAN M12 5-pole 0.5 m	1022137

Our Sales department would be glad to assist with any questions you may have.

2.5.8	Chlo	rine Sensors for DULCC	MARIN II and DUL	.COMARIN 3				
The technical data for the sensors can be found in the chapters indicated.								
Sensor type	Measured variable	Determination of combined chlorine	Compatible with contamination	Compatible with chlorine electrolysis	Compatible with trichloroi-so-cyanuric acid	Chap- ter		
CGE 3-CAN-10 ppm order no. 1047977	Free chlo- rine	Yes, with CTE 1-CAN-10 ppm, order no. 1023427	Suitable for higher loads, surfactants	Yes	Yes	1.1.3		
CTE 1-CAN-10 ppm order no.: 1023427	Total chlorine	Yes, with CBR 1-CAN-10 ppm, order no. 1023425	Suitable for higher loads, surfactants	No	No	1.1.4		
CLO 1-CAN-10 ppm order no.: 1122057	Free chlo- rine	No	Tolerance against biofilm formation with hydrodynamic cleaning	Yes		1.1.5		
CLE 3-CAN-10 ppm order no.: 1023425	Free chlo- rine	No	Limited suitability	Yes	No	1.1.3		
CBR 1-CAN-10 ppm order no.: 1023425	Free chlo- rine	Yes, with CTE 1-CAN-10 ppm, order no. 1023427	Suitable for higher loads, surfactants	No	No	1.1.3		

The sensors CLO 1-CAN-10 ppm (order no.: 1122057) and CGE 3-CAN-10 ppm (order no. 1047977) only work with DULCOMARIN II with software version 3036 or higher.

Important: DULCOMARIN II devices with a software version of 3027 or earlier cannot be updated.

2.6 Controllers for Cooling Tower Control

2.6.1 Overview of Cooling Tower Control

Controller selection table

Function	AEGIS X	AEGIS II	SlimFLEX 5a	AEGIS S
Number of cooling towers controlled	6	2	1	1
Bleeding/desludging				
- Conductive conductivity-dependent	+	+	+	+
- Inductive conductivity-dependent (via mA)	+	+		+
- Alternatively, dependent on the volume of water added	+	+	+	+
- Alternatively, as a percentage based on a time base of 5 minutes	+	+	+	
Piccide and dec	E	Lla La O	Lla La O	11-1-0
Biocide metering	Freely con- figurable	Up to 2 per cooling tower	Up to 2	Up to 2
Forced bleeding with timer-controlled biocide	Time-de-	Time-de-	Time-de-	Time-de-
metering	pendent and/or measured value-de- pendent	pendent and/or measured value-de- pendent	pendent and/or measured value-de- pendent	pendent and/or measured value-de- pendent
Bleed lock after timer-controlled biocide me-	+	+	+	+
tering				
Metering of chemicals (inhibitors, dispersants)	Freely con- figurable	Up to 4	Up to 2	Up to 2
- Contact water meter-controlled	+	+	+	+
- Alternatively, dependent on the bleed valve opening time	+	+	+	+
- Alternatively, as a percentage based on a time base of 5 minutes	+	+	+	-
- Controlled via a fluorine sensor	+	+	+	-
Control of metering pumps and bleed dampers				
Pulse frequency outputs for metering chemicals	4-12	4	-	-
Changeover contact output relay, with power supply, for controlling a bleed damper or metering pumps	3-9	2	2	1
Changeover contact output relay, potential-free for controlling metering pumps	3-9	3	3	4
Corrosion measurement				
For two different metals, e.g. stainless steel, copper, mild steel, admiralty metal	+	+	-	-
Analogue outputs 0/420 mA	Freely con- figurable	Up to 4	Up to 2	2
Special functions				
Special functions Fieldbus, Modbus	+, RTU	+, RTU		+, RTU and TCP
PROFIBUS-DP, BACnet® via external gateways on request	+	+	-	-

Function	AEGIS X	AEGIS II	SlimFLEX 5a	AEGIS S
Subsequent function upgrade via plug-in modules	+	+	+	-
LAN connector	+, web server	+, web server	+, web server	+
Wi-Fi	+, web server	+, web server	+, web server	+
E-mail reporting/alerts	+	+	+	-
Graphic display of metering and bleeding on the web server	+	+	+	-
Data logger	+	+	+	+
Power supply				
100 - 230 V AC	+	+	+	+
Method of installation, degree of protection				
Wall-mounted	IP 66, IP 67	IP 65	IP 65	IP 65

2.6.2

Controller AEGIS X

Extremely flexible for extremely large cooling systems: Controller AEGIS X

AEGIS X ensures that evaporation cooling systems are run as efficiently as possible. The controller is highly flexible and suited to large cooling systems with many parameters. Using digital communication options, cooling towers can be conveniently monitored and their data evaluated remotely.

AEGIS X is a controller for treating cooling water in cooling towers and boilers.

In order to optimise the cooling process and prevent biological growth, deposits and corrosion, the controller continuously monitors the electrolytic conductivity and controls bleeding. Biocide metering based on time or measured values prevents contamination in the cooling tower.

With up to two satellite units, AEGIS X monitors and controls several cooling towers at the same time. The combination of main and satellite unit ensures truly excellent flexibility. This makes the controller perfectly suited to large cooling systems with many parameters, including corrosion.

Thanks to the large number of communication options, the cooling tower can be remotely controlled with ease. An individually adaptable web server makes simple management, tracking and data visualisation possible.

Your Benefits

- Up to two satellite units can be added for additional inputs and outputs, allowing more sensors and pumps to be connected.
- Intuitive operation via the HMI (Human-Machine Interface) thanks to a clearly legible industrial display and robust keys for standard commands, such as calibration and monitoring.
- The adaptable web server permits simple configuration of process settings as well as monitoring and visualisation of process data.
- Extensive overview and control of the cooling tower processes: All process data and alarms can be communicated to the process control system via fieldbuses such as Modbus RTU.
- Advanced communication options: Various network protocols such as FTP or MQTT enable remote access and data management via Wi-Fi and LAN (Ethernet).
- Advanced calculations, such as cost calculation for managing chemicals.

Technical Details

Comprehensive inputs and outputs

- Up to 24 flexible sensor inputs and mA outputs (8 per device), e.g. CTFS sensor, linear polarisation resistor (LPR) corrosion sensor
- Up to 30 output relays and pulse outputs (10 per device) to control pumps and other actuators
- Up to 24 digital inputs (8 per device) to control level switches, water meters and remote switches
- Up to 12 pulse frequency outputs
- Up to 18 relays

Communication options

- In-built Modbus RTU and via gateways (BACnet, Modbus TCP, PROFINET)
- Web interface via Wi-Fi and Ethernet, FTP server, rest API, MQTT client interface. The client interface is an intuitive remote control via a Wi-Fi or network connection to your PC or smartphone, e.g. for configuration settings or setpoint settings

Technical Data

Inputs and outputs

Resolution

Measured variables and measuring ranges

Conductivity:

With digital sensor CTFS at input A and B and via serial module

D1: 0.1 - 10 mS/cm

Via conductivity module L3 depending on sensor used (LMP,

LFT): $50 \, \mu S \, cm - 20 \, mS/cm$

Via mA module AA with the inductive conductivity sensor ICT: 8

to 2 mS/cm, 20 mS/cm, 200 mS/cm

Type of connection mV:

pH: 0.00 ... 14.00

ORP potential: -1500 ... +1500 mV

Type of connection mA (amperometric measured variables, measuring ranges corresponding to sensors, 2 ppm, 10

Chlorine Chlorine dioxide

Chlorite Bromine Ozone

Hydrogen peroxide Peracetic acid Temperature:

via Pt 100/Pt 1000, measuring range 0 ... 150 °C

Inputs

4 plug-in module slots per unit for 2-channel serial sensor input module 2-channel conductivity input module 2-channel mV input module 2-channel mV/mA input module 2-channel mA input module

Outputs

2-channel mA output module

6 output relays as changeover contacts, of which 3 are poten-

tial-free and 3 are AC/DC

4 pulse frequency outputs for controlling metering pumps 8 digital control inputs for contact water meter, flow switch and

pause for locking . pH: 0.01 pH

ORP: 1 mV

Amperometric analysis (chlorine etc.): 0.001/0.01 ppm, 0.01 vol.

0.3% based on the full-scale reading Accuracy

Temperature compensation Pt 100/Pt 1000 for pH Control characteristic P/PI/PID control **Electrical Connection** 100 - 230 V, 50/60 Hz

Ambient temperature -5... 50 at max. 95% relative air humidity (non-condensing)

CE, MET registered, UK CA Tests and approvals PC with flame proofing equipment Housing material 276 x 424 x 137 mm (H x W x D) **Dimensions**

Wall-mounted: IP 67 **Enclosure rating**

Field bus connection Modbus RTU, additional field buses via gateway

2.6.3

Controller AEGIS II

Treatment of cooling water in evaporation cooling systems - VDI 2047 and 42-compliant Federal Immission Control Ordinance (BImSchV)-compliant

Controller AEGIS II continuously measures and controls the conductivity and biocide concentration to keep pipework and heat exchangers clean.

The AEGIS II records all the necessary measuring parameters for cooling water treatment and controls the functions necessary for smooth operation:

- Measures the electrolytic conductivity controls bleeding
- Biocide metering time-dependent or as measurement and control, VDI 2047 and 42-compliant. Federal Immission Control Ordinance (BImSchV)-compliant (e.g. chlorine)
- Corrosion measurement determines whether enough corrosion inhibitor is being metered
- pH measurement measures and controls the pH value

Your Benefits

- If desired, the biocide concentration can be measured and controlled online
- Measurement of conductivity, temperature and flow control with the CTFS type digital sensor
- Serial web interface for unit configuration and remote maintenance with e-mail alarms (the controller must be connected to the Internet for e-mail alarms). WiFi as an option
- Forced bleeding: performs bleeding before biocide metering, based on time or measured values
- Bleed lock: blocks bleeding after biocide metering has taken place
- Operating status displayed by 10 status LEDs
- Blockage of relays between one another to prevent the metering of incompatible chemicals
- Locking of relays by digital control inputs
- Connection to the DULCONNEX IIoT solution, developed by ProMinent.

Technical Details

- 8 digital inputs for contact water meter, flow detector and control signals
- 10 status LEDs display the operating status
- 9 flexible relay outputs: for setpoint-dependent flow volume-proportional or time-based control of actua-
- Measured variables: conductivity, pH, ORP, chlorine, bromine, chlorine dioxide and more

Field of Application

- Control of bleeding in evaporation cooling systems
- Volume-proportional control or regulation of the metering of corrosion inhibitors, de-foamers and disper-
- Measurement and control of the inhibitor concentration through the use of a fluorescence sensor
- Measurement and optionally control of the pH value and ORP voltage
- Metering of biocides, based on time or measured values

Technical Data

Measuring range Conductivity:

With digital sensor CTFS at input A and B and via serial module D1: 0.1 -

10 mS/cm

Via conductivity module L3 depending on sensor used (LMP, LFT): 50 µS/

cm - 20 mS/cm

Via mA module AA with the inductive conductivity sensor ICT: 8 to 2 mS/

cm, 20 mS/cm, 200 mS/cm

Connection type mV:

pH: 0.00 ... 14.00

Redox potential: -1500 ... +1500 mV

Type of connection mA (amperometric measured variables, measuring

ranges according to sensors, 2 ppm, 10 ppm):

Chlorine

Chlorine dioxide

Bromine

Temperature:

Via Pt 100/Pt 1000, measuring range 0 ... 150 °C

Resolution pH: 0.01

ORP voltage: 1 mV temperature: 0.1 °C

amperometric analysis (chlorine etc.): 0.001/0.01 ppm, 0.01 vol.%, 0.1

Inputs and outputs 3 plug-in module slots for 2-channel plug-in modules according to identity

code

1 input for any analogue signals

5 output relays acting as changeover contacts, of which 3 are poten-

tial-free and 2 are AC/DC

4 pulse frequency outputs for controlling metering pumps

2 serial sensor inputs for CFTS conductivity sensors and CRS corrosion

8 digital control inputs for contact water meter, flow switch and pause for

locking

0.3% based on the full-scale reading Accuracy

Temperature compensation Pt 100/Pt 1000 for pH

Control characteristic P/PID control

Electrical Connection 90 - 253 V, 50/60 Hz, 25 VA, 24 V DC

Field bus connection Modbus RTU, additional field buses via gateway

Ambient temperature 0 ... 50 °C (for use indoors or with a protective enclosure)

Enclosure rating Wall-mounted: IP 67

Tests and approvals CE, MET (corresponding to UL as per IEC 61010)

PPE with flame-proof finish Housing material Dimensions H x W x D 240 x 360 x 110 mm

Description of modules

Module AA mA/mA sensor input (slot 1-3):

2 sensor inputs for connecting, e.g. chlorine sensors, such as CBR or pH transducer pHV1

Module V2 mV/mV temperature sensor input (slot 2-3):

2 sensor inputs for connecting pH and ORP sensors and temperature sensors Pt100/ Pt1000, e.g. of type PHER, RHER, PHEI, RHEIC, Pt100SE

Module H1 mA/mA output (slot 1-3):

2 electrically isolated analogue outputs 0/4-20 mA for the output of measured values or control variables

Module D1 serial sensor monitoring module (slot 1-3):

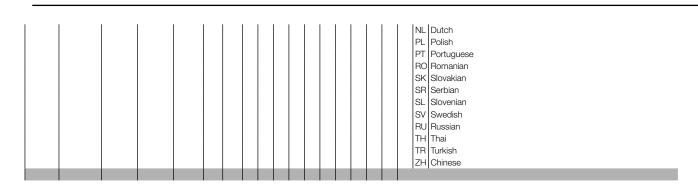
■ Module 2 digital sensor inputs for connecting CTFS or CRS corrosion sensors

Module V1 mV/temperature + mA module (slot 2-3):

- 1 sensor input for pH or ORP sensor and temperature sensor Pt100/Pt1000
- 1 sensor input for connecting, e.g. chlorine sensors, such as CBR or pH transducer pHV1

Module CM Modbus RTU + 2 mA outputs (slot 3):

- 1 Modbus RTU slave, for connecting to a PLC or gateway
- 1 Modbus RTU master, for connecting a Pyxis fluorometer sensor
- 2 electrically isolated analogue outputs 0/4-20 mA for the output of measured values or control variables


Module CA Modbus RTU + 2 mA outputs + 2 mA inputs (slot 3):

- 1 Modbus RTU slave, for connecting to a PLC or gateway
- 1 Modbus RTU master, for connecting a Pyxis fluorometer sensor
- 2 electrically isolated analogue outputs 0/4-20 mA for the output of measured values or control variables
- 2 sensor inputs for connecting, e.g. chlorine sensors, such as CBR or pH transducer pHV1

Identity code ordering system for AEGIS II cooling tower control

AGIb	Regional code																		
	EU	Europe																	
		Version																	
		00	with Prol	with ProMinent logo															
1			Operatin																
			6	100 – 240 V, 50/60 Hz															
				Comm	unica	tion ir	nterfa	ace											
			1	LO															
			1	WO	1	+ WI													
			1	L1	1	with													
			1	W1		+ Wi				12 L	AN (cabl	le						
						licatio			tting										
					XX	no d													
						Seria													
						XX	_				nmis	sior	ning						
									ensor										
							XX		ection										
									ensio			ınpı	ut C	(U)					
									No r Con			+000		otur.		200	r in:	s+	
									mA/						e se	HSO	riri	Jul	
									mA/				iipui	L					
									seria				dule	2					
									Exte						/F)				
									XX				di.ii)	JI L	1)				
									- 1				ten	nper	atur	e se	ensc	or input	
									AA							. 50		pat	
									V2							sor	ani	ut	
									H1					-		-	,,		
			1						D1					odule)				
									V1	mV/	temp	era	ture	+ n	nA r	nodi	ule		
						İ				Exte	nsio	n sl	ot 3	(Inp	ut I/	J)			
										XX	No r	nod	lule						
										L3	Con	duc	tivity	y ten	npei	atur	e s	ensor inp	put
											mA/								
															ature	ser	ารด	r input	
											mA/								
																		oring	
											mV/								
											Mod								nA/mA sensor input
										- 4	Pum						Ou	ipui + III	INTIA Serisor input
										- 1	- 1				•	-	3 00	mmissic	onina
											- 6			ed re			_		
										ı					-	-		e Europe	e
										ı	İ	Ì	Pre	-wire	ed o	utpı	ut re	elay	
											İ		0	Onl	y fo	ruse	e ou	ıtside Eu	urope
														Inhi	bito	r me	eter	ng outpu	outs
																			ng commissioning
																			putputs
															0				during commissioning
																Ha 0		are exte	ension
																١		one oprovals	
																		CE	
																		MET ((USA)
																			MET (Europe)
			1														1		mentation language
																			erman
			1															EN Er	nglish
						1										1		ES Sp	panish
																		FR Fr	rench
																			ulgarian
																		CS Cz	
																		DA Da	
																			stonian
																		EL Gr	
																		FI Fir	
																			roatian
																			lungarian
																		IT Ita	
																			apanese
																		KO Ko	
																		LV La	ithuanian
																		ILV ILE	atviai i

Retrofit modules for AEGIS II and SlimFLEX 5a

It is possible at all times to retrofit modules.

	Information	Order no.
mA/mA output modules	AEGIS II, SlimFLEX 5a	1092565
2x conductivity temperature sensor input modules	AEGIS II, SlimFLEX 5a	1081809
mA/mA sensor input modules	AEGIS II, SlimFLEX 5a	1081806
2x mV/mV temperature sensor input mod- ules	AEGIS II, SlimFLEX 5a	1081807
Module 2x serial sensor inputs	AEGIS II	1092566
Modules mA/mV + temperature sensor inputs	AEGIS II	1081808
Module Modbus RTU + 2 mA outputs	AEGIS II	1094377
Module Modbus RTU + 2 mA outputs + 2 mA inputs	AEGIS II	1094350
Wi-Fi module	AEGIS II, SlimFLEX 5a	734211

2.6.4

Controller SlimFLEX 5a

Controller SlimFLEX 5a, the entry level class for cooling water treatment, VDI 2047 Sheet 2 and BLM-SchV 42-compliant, the innovative and flexible controller.

The cooling tower regulator SlimFLEX 5a continuously measures and controls conductivity and controls biocide metering, keeps pipework and heat exchangers clean and prevents legionella.

The SlimFLEX5a records all the important measuring parameters for cooling water treatment and controls functions necessary for smooth operation:

- Time-dependent biocide metering (boost metering). Checks can be undertaken by measuring the ORP voltage in the cooling water.
- Measurement of electrolytic conductivity controls bleeding.
- pH measurement with integrated PID controller.

Your Benefits

- A web interface for device configuration and remote maintenance is standard, Wi-Fi is available as an
- Forced bleeding: performs bleeding before biocide metering
- Bleed lock: blocks bleeding after biocide metering has taken place
- Operating status displayed by 6 status LEDs
- Connection to the DULCONNEX IIoT solution, developed by ProMinent.

Technical Details

- 6 digital inputs for contact water meter, flow detector and control signals
- 6 status LEDs display the operating status
- 5 flexible relay outputs: for setpoint-dependent flow volume-proportional or time-based control of actua-
- Measured variables: Conductivity, pH, ORP

Field of Application

- Control of bleeding in smaller evaporation cooling systems
- Volume-proportional control or regulation of the metering of corrosion inhibitors, de-foamers and disper-
- Measurement and if necessary control of pH
- Time-dependent metering of up to 2 biocides

Technical Data

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

pH: 0.00 ... 14.00

Redox potential: -1500 ... +1500 mV

Resolution Conductivity: 1 μS/cm

pH: 0.01

Redox potential: 1 mV Temperature: 0.1 °C

Inputs and outputs 2 plug-in module slots: Plug-in modules for 2-channel

modules: mA outputs, pH/ORP inputs

5 output relays used as a changeover contact, 3 of

which are potential-free and 2 are AC/DC 1 serial sensor input for CTFS sensor

6 digital status inputs

Accuracy0.3% based on the full-scale readingMeasurement inputpH/ORP (input resistance > 0.5 x 10^{12} Ω)

Temperature compensation Pt 100/Pt 1000 for pH

Correction range temp. 0 ... 100 °C **Control characteristic** P/PID control

Electrical Connection 100 – 230 V, 50/60 Hz, 25 VA

Ambient temperature 0 ... 50 °C (for use indoors or with a protective enclo-

sure)

Enclosure rating Wall-mounted: IP 65

Tests and approvals CE, MET (corresponding to UL as per IEC 61010)

Housing material PPE with flame-proof finish

Dimensions H x W x D 220 x 250 x 122

Climate Permissible relative humidity: 95 %, non-condensing

DIN IEC 60068 -2-30

SlimFlex SF5a with LAN (including cable) and Wi-Fi. Conductive conductivity with CTFS sensor

	Control input	Order no.
SF5A006W0XXXXXXXXXXXXX00000001	Conductivity (CTFS sensor)	1095464
SF5A006W0XXXXXXH1XXXX00000001	Conductivity (CTFS sensor), 2 mA outputs	1095443
SF5A006W0XXXXXXXXV2XX00000001	Conductivity (CTFS sensor), pH/ORP	1095465
SF5A006W0XXXXXXH1V2XX00000001	Conductivity (CTFS sensor), pH / ORP, 2 mA outputs	1095466

Please order sensors separately.

2.6.5 Controller AEGIS S

Treatment of cooling water in evaporation cooling systems - VDI 2047 and 42nd Federal Immission Control Ordinance (BImSchV)-compliant

AEGIS S completes the ProMinent product range for cooling water treatment controllers for applications without stringent requirements, i.e. below AEGIS II.

Controller AEGIS S continuously measures and controls the conductivity and controls the biocide and corrosion inhibitor concentration to keep pipework and heat exchangers clean.

AEGIS S is a controller designed for use in evaporation cooling systems, cooling towers and air scrubbers. AEGIS S continually measures the electrolytic conductivity and controls the process water's bleeding. The device controls biocide metering by means of time-based intermittent metering or controls biocide metering depending on measurements.

The colour 5" touchscreen display allows the AEGIS S to be operated and configured with ease. Configurations and information about the measured values can be quickly and easily exported for documentation purposes using a USB stick.

Your Benefits

- Colour 5" touchscreen display ensures simple operation and configuration
- Live view of the cooling tower with animated cooling circuit provides a quick overview
- PC application for simulating and configuring the controller
- Modbus RTU and Modbus TCP interfaces enable linking to a higher level of integration
- USB connector for exporting configuration data and updates makes it easier to transfer configurations
- Forced bleeding: Performs bleeding based on time or measured values before biocide metering
- Bleeding lock: Blocks bleeding once the biocide has been metered

Technical Details

- 5 digital inputs for which parameters can be set
- 2 mA outputs for which parameters can be set
- 6 relay outputs
- Measured variables: Conductivity, pH, ORP, chlorine, bromine

Field of Application

- Control of bleeding in evaporation cooling systems
- Volume-proportional control or regulation of the metering of corrosion inhibitors, de-foamers and dispersants
- Measurement and control of inhibitor concentration
- Measurement and if necessary control of the pH value and redox potential
- Metering of biocides dependent on time or measured value

Technical Data

Inputs and outputs:

Measurement and control of up to 5 parameters at a time

- 1 x conductive conductivity with analogue sensor or conductive conductivity via a digital CTFS sensor
- 1 x top-up water volume (Q/mA)
- 1 x temperature (Pt1000)
- 2 x analogue inputs (4-20 mA) for which parameters can be set depending on connected sensor (e.g. inductive conductivity (ICT 8), pH, ORP with transmitter, amperometric sensors, e.g. chlorine, tank level (0/4-20 mA) and other generic sensors
- 2 mA outputs for which parameters can be set, for measured variables and controlling actuators
- 5 digital inputs for which parameters can be set can be used as flow switch, contact water meter, remote control (pause), level switch

6 relays, of which:

- 1 output relay as bleed relay, changeover contact, fed
- 4 low-voltage relays for controlling metering pumps for biocide A & B (permanently assigned to biocide), dispersing agent, inhibitor, to regulate e.g. pH, ORP and chlorine metering
- 1 alarm, changeover relay potential-free

Communication:

Wi-Fi, LAN/Ethernet, web server, Modbus RTU interface (RS485), Modbus TCP interface (Ethernet), cloud connection, optional mobile service modem

Automatic setting of time and date via the NTP protocol if connected to the Internet

AEGIS S Order no. 1119864

DULCOTEST Sensor for Conductivity, Type CTFS 2.6.6

Multi-parameter sensor for electrolytic conductivity, temperature and flow control for use in cooling water treatment. Installation in bypass fitting BAMa DGMa and in DN 20 pipework. For operation on the AEGIS II, SlimFLEX 5a and AEGIS S cooling tower controller.

Your Benefits

■ 3 measured variables in one sensor: electrolytic conductivity, temperature and flow control

Auto-ranging within the measuring range for electrolytic conductivity 100...10,000 μS/cm

0.1 mS/cm Min. measurement range Max. measurement range 10 mS/cm Cell constant 10.00 cm $^{\text{-1}}$ $\pm 5~\%$

Temperature measurement Semiconductor temperature sensor

Medium temperature 0 ... 50 °C Max. pressure 7.0 bar (at 35 °C) Sensors Graphite, epoxy

Sensor shaft PP Seal material FKM A Thread see Installation Installation length see Installation

Process integration Installation without separate rotary adapter: in BAMa DGMa, 25 mm mod-

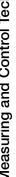
ule: adapter CTFS/DGMA M25-NPT ¾" PVDF, order no. 1080293.

Enclosure rating

Typical applications Cooling water.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

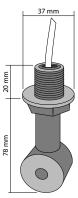

Controllers AEGIS II, SlimFLEX 5a and AEGIS S cooling tower controller

Measuring principle, tech-Conductive. Integrated temperature measurement and thermal flow detec-

nology

Order no. CTFS sensor conductivity/temperature/flow complete 1081727

Note the general information on page → 104 (Overview table for conductivity sensors)



2.6.7

Conductivity Sensor ICT 8-mA

Inductive sensor for the measurement of electrolytic conductivity. Suitable for contaminated water. With integrated temperature correction and factory-calibrated 4...20 mA output signal.

Your Benefits

- Measured variable: electrolytic conductivity up to 200 mS/cm without polarisation effect
- The inductive (non-contact) measuring principle permits applications in water with solids content and in film-forming media
- Fail-safe 4-20 mA output signal for flexible connection to measuring equipment with standard 4...20 mA input
- Integrated temperature correction replaces separate temperature sensor and sensor fitting

Min. measurement range0.2 mS/cmMax. measurement range200 mS/cm

Temperature correction integrated in the sensor electronics, temperature co-ef-

ficient: 1.7%/K

Medium temperature max.50 °CSensor materialPPSealsEPDMInstallation length75 mm

Electrical connection 2 + 10 m fixed cable (6 x 0.25 mm²),

Typical applicationsDesalination control in cooling towers, contaminated waste water, control of electroplating and rinsing baths

waste water, control of electroplating and rinsing baths, salt water desalination, adjustment of the salt content in

swimming pool water

Process integration 1/2" male thread (BSP) for mounting using flange,

installation in PVC pipes, DN 50 by means of installation adapter ICT8, DN 50, PVC, order no. 1106570, immersion using immersion pipe, 1 m, order no.

1105964

Controllers DAC, D1Cb, D1Cc, AEGIS II

Measuring principle, technology Inductive, 2 coils. Integrated temperature measurement,

integrated 4...20 mA transducer

Order no.

ICT 8 -mA-200 mS/cm 1098530

DULCOMETER Transmitters 2.7

2.7.1

Transmitter DULCOMETER DMTa

The compact 2-wire transmitter - the link to the PLC and DULCOMETER.

The transmitter DULCOMETER DMTa converts the sensor signals for pH, ORP value, chlorine concentration and conductivity into an interference-insensitive 4-20 mA analogue signal. Flexible, safe and always the optimum resolution of measured value.

The 2-wire transmitter DMTa converts the following sensor signals into an interference-insensitive 4-20 mA analogue signal: pH, ORP, temperature, chlorine and conductivity.

It is fed via the 2-wire analogue input of a PLC or via a 2-wire analogue input of a ProMinent controller. The 4-20 mA analogue current proportional to the measured value is transmitted via the same two lines.

The DMTa offers an on-site calibration option of the sensor and galvanic separation between the sensor input and measured value output.

Your Benefits

- Flexibility in the choice of measured variable with pH, ORP and temperature
- Excellent operational safety, thanks to sensor monitoring (pH)
- Galvanic isolation between the sensor and supply
- Always the optimum measured value resolution by auto-ranging with conductivity measurement
- Safety through sensor monitoring of pH for glass breakage and line breakage
- VARIOus installation options: wall-mounted, installation on an upright or in a control cabinet

Technical Details

- Measured variables: pH, ORP, chlorine, temperature and conductivity
- Precision: 0.5 % of the measuring range limit value
- Correction variable: Temperature via Pt 100/Pt 1000 (pH, chlorine, conductivity)
- Communication interface: PROFIBUS DP (wall-mounted only)
- Degree of protection: IP 65 (wall-mounted, pipe-mounted), IP 54 (installation in a control cabinet)
- Display: Graphic display

Field of Application

- Process engineering
- Food and beverage industry
- Pharmaceuticals
- Waste water treatment
- Power station technology

DULCOMETER Transmitters 2.7

Technical Data

Measuring range pH - 1.00 ... 15.00

-1200 ... +1200 mV redox potential

0.01 ... 50.0 mg/l Chlorine

-20 ... +150 °C

1 μ S/cm ... 200 mS/cm (auto-ranging), depending on the cell constant

0.006 ... 12.0/cm for conductivity Cell constant

Resolution 0.01 pH

1 mV

0.1 % of measuring range for chlorine

0.1 °C

Conductivity 1/1000 of display value (min. 0.001 µS/cm)

0.5% from measurement range Accuracy

Measurement input mV terminal (pH, ORP); input resistance $> 5 \times 10^{11} \Omega$

Chlorine terminal (DMT chlorine sensors)

Pt 100/1000 terminal

Conductivity terminal (2 or 4-line connection)

Correction variable Temperature via Pt 100/1000 (pH, chlorine, conductivity) Correction range temp. Chlorine: 5 ... 45 °C, pH: 0 ... 100 °C, conductivity: 0 ... 100 °C

Min. current loop 4 mA Max. current loop 20 mA Fault current 23 mA

2-wire transmitter, 16... 35 V DC, nominal 24 V Feed voltage

PROFIBUS DP design, 16... 30 V DC, 24 V nominal

Communication interface PROFIBUS DP (wall-mounted only)

Min. ambient temperature 0°C Max. ambient temperature 55 °C

Climate

Relative humidity up to 95% (non-condensing) **Enclosure rating** IP 65 (wall-mounted, pipe-mounted)

IP 54 (installation in a control cabinet)

graphical display Display

Housing material **PPE** 135 mm Dim. H Dim. B 125 mm D dimension 75 mm Weight 0.45 kg

A complete measuring station comprises:

- Transmitter DMTa (see identity code)
- Fitting: BAMa, DGMa, DLG III
- Chlorine sensor (depending on identity code)
- Mounting kit for chlorine sensor
- pH sensor (depending on identity code)
- ORP sensor (depending on identity code)
- Temperature sensor Pt 100/Pt 1000 (depending on identity code)
- Conductivity sensor
- Sensor cable
- PROFIBUS DP connection accessories

For more information: Immersion fittings, see page 150; sensors for chlorine, see page 16; pH sensors with SN6 plug-in head or VARIO Pin, see page62; ORP sensors with fixed cable, see page98; DULCOTEST temperature sensors, see page 100; conductivity sensors, see page 102; sensor accessories, see page 133; metering monitor, control cable see volume 1 Chapter 1.6.6.1.

2.7 **DULCOMETER Transmitters**

ProMinent

2.7.2

Identity Code Ordering System Measuring Transducer DMTa

DULCOMETER Transmitters

DMTa	Type of mo	pe of mounting								
	W	Wall mo	Nall mounted , pillar assembly too							
	S	Control p	oanel insta	allation1						
		Version	Version Control of the Control of th							
		0	with ProMinent logo							
		İ	Operating voltage							
			9	Curren	t loop	4-20	mΑ	two v	/ire te	chnology), operating voltage 1640 V DC, nominal 24 V DC (only if communication point
				= none)						
			5						tage	1630 V DC, nominal 24 V DC (only if communication interface = PROFIBUS DP)
				Comm	1		terfa	ces		
				0	non					
				4					for m	ounting type W
						asurec	varia	able 1		
					Р	рН				
					R	ORF				
					Т	Tem		ure		
					С	Chlo				
					L	Con			h-1- 0	(A
					Measured variable 2 (Correction variable)					
						Temperature Pt 1000/Pt 100				
						None (in the case of measured variable T) Enclosure rating				
							- 1	stand		
								Langu		
									ermai	1
									nglish	
								- 1	ench	
								s Is	oanisł	h
								l Ita	alian	
								Р	esett	ing A, probe
								0	Sta	andard ProMinent buffer solution pH 7 and 4
								D	Ref	ference buffer DIN 19266 pH 7 and 4
								V	Var	iable buffer recognition
									Pre	esetting B, probe
									0	Autom. temperature measurement (standard)
									1	Manual temperature measurement
									2	Autom./manual temperature measurement
									9	No temperature measurement
										Presetting C, output
										0 Proportional measured variable (Standard)
										Manual adjustable current value
										2 Proportional or manual
										3 Proportional or manual hold
									-	4 4 mA constant current

The last four digits of the identity code indicate the default software settings, e.g. cell constants for conductivity, temperature compensation etc.

0 = default settings

The transmitters can be preset ex factory. The presettings can be changed with ease in the operating menu.

Note:

 $\ensuremath{^{1}}\textsc{There}$ is no rear housing section in the control panel installation variant.

2.7 **DULCOMETER Transmitters**

2.7.3 Application Example: Measurement of Free Chlorine with Connection to a PLC

Tasks and applications

In the treatment of potable water in a water works with a PLC as the higher-order control system, simple measuring stations are needed to measure the disinfectant "free chlorine" at the outlet of the water works and thereafter to monitor protection of the network in the distribution system. Metering is proportional to the flow and is controlled by the PLC. The following conditions must be met:

- Disinfectant: free chlorine with an adjustable concentration of 0.1 ppm
- Raw water: Groundwater with a pH of 7.5 and a temperature of 8 13 °C
- Installation of the measuring station in the bypass of the process flow
- Display of the measurement result and calibration by a measuring instrument in the proximity of the bypass installation and transmission of the measured value to the PLC via an electrically isolated 4 20 mA signal
- Power supply to the measuring instrument via the PLC (two-wire instrument)

Components of the measuring/control station

Qty		Name	Order no.	
	1	Transmitter DMTa	DMTaW090C00D000	
	1	Sensor for free chlorine CLE 3-DMT-5 ppm	1005511	
	1	Universal cable, 5-pin round plug	1001300	
	1	Bypass fitting BAMa with one G 1" module and sensor adapter	BAMAEU21X1XX001X000000EN	

Benefits

- Simple, compact and cost-effective measuring station close to the bypass installation
- Electrical installation cost-savings due to power supply over a two wire system
- No need for electrical isolation of the output signal by electrical isolation integral to the DMT

2.8 Measuring and Test Systems

2.8.1

Photometer

Precise measurement results through high-quality interference filters

Photometers measure nearly all disinfectants and the pH value based on the photometric principle. They are portable, compact and make safe, simple measurement possible.

The photometers DT1B, DT3B and DT4B are used, among other things, as a reference method for calibrating the electrochemical sensors for chlorine, chlorine dioxide, chlorite, H_2O_2 , bromine and ozone. They have been adapted to today's technical requirements and can be used in almost all areas of water analysis. High-quality interference filters and long-term stable LEDs are used as the light source in the high-precision optics. The entire measuring unit is maintenance-free. Precise and reproducible analysis results are achieved with minimum time and effort. The units are winning customers over with their excellent operating convenience, ergonomic design, compact dimensions and ease of use.

Your benefits

- Portable and compact
- Simple to operate with text support
- safe, simple measurement of chlorine, chlorine dioxide, chlorite, H₂O₂, bromine, ozone, pH and trichloro-isocyanuric acid
- Can be calibrated
- Memory function for the last measurements
- Backlit display
- Real-time clock
- Countdown
- Watertight, degree of protection IP 68

Technical Details

Measuring ranges of the DT1B:

- 0.05 ... 6.0 mg/l free chlorine (DPD1) + total chlorine (DPD1+3)
- 5 ... 200 mg/l free chlorine (high range)
- 0.1 ... 13.0 mg/l bromine (DPD1)
- 0.05 ... 11 mg/l chlorine dioxide (DPD1)
- 0.03 ... 4.0 mg/l ozone (DPD4)
- 6.5 ... 8.4 pH (phenol red)
- 1 ... 80 mg/l cyanuric acid

Measuring ranges of the DT3B:

■ 1 ... 50 / 40 ... 500 mg/l hydrogen peroxide (H₂O₂)

Measuring ranges of the DT4B:

- 0.03 ... 2.5 mg/l chlorite
- 0.05 ... 11 mg/l chlorine dioxide
- 0.05 ... 6 mg/l chlorine

Measuring tolerance: Depending on the measured value and measuring method

Battery: 4 x AA/LR6

Permissible ambient temperature range: 5...40 °C

Relative humidity: 30 ... 90% (non-condensing)

Degree of protection: IP 68
Housing material: ABS
Keypad: Polycarbonate film

Dimensions: 190 x 110 x 55 mm (L x W x H)

Weight: 0.4 kg

Field of Application

- Swimming pools
- Potable water
- Process water

2.8 Measuring and Test Systems

	Order no.
Photometer DT1B	1039315
Photometer DT3B hydrogen peroxide	1039317
Photometer DT4B	1039318

The scope of delivery of the photometer includes a transport case, accessories, cuvettes and reagents.

Consumable Items

	Order no.
DPD1 tablets, 100 tablets	1115981
DPD3 tablets, 100 tablets	1115982
DPD3 tablets, 100 items (like DPD3 tablets, but not hazardous material)	1124079
Glycine tablets, 20 pieces	1115983
Phenol red tablets 100 pieces	1116004
Cyanuric acid tablets, 100 tablets	1039744
SPADNS reagent, 250 ml for fluoride detection	1010381
Calibration standard fluoride 1 mg/l, for calibration of the photometer	1010382
during fluoride determination	
3 pieces replacement cuvettes; round cuvettes with lid for DPD, phenol	1007566
red and cyanuric acid detection (DT1, DT1B, DT4, DT4B, DT2B, DT2C)	
3 pieces replacement cuvettes for fluoride detection (DT2B and DT2C)	1010396
Chlorine dioxide tablets No. 1, 250 no.	1039732
Chlorine dioxide tablets No. 2, 250 no.	1039733
Chlorine HR tablets, 100 pieces	1075056
Acidifying tablets, 100 pieces	1075057

Spare Parts

Chlorite Photometer

	Order no.	
Stirrer for purging of chlorine dioxide (DT4)	1022754	
3 pieces replacement cuvettes; round cuvettes with lid for DPD, phenol	1007566	
red and cyanuric acid detection (DT1, DT1B, DT4, DT4B, DT2B, DT2C)		

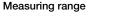
H₂O₂ measurement

	Order no.
Reagent for H ₂ O ₂ (DT3), 15 ml	1023636
Replacement cuvettes, 5 pieces, for H ₂ O ₂ (DT3)	1024072

Measuring and Control Technology

Accessories for Measuring and Control Devices 2.9

2.9.1 Transmitter 4 ... 20 mA (two-wire system)


Benefits:

- Reliable signal transmission, even over large distances
- Interference-resistant 4 ... 20 mA signal
- Simple installation directly on the sensor

Typical applications:

Transmission of the measuring signal even over long distances and/or transmission of interference-resistant measured signals (e.g. pH, ORP) in conjunction with controllers type D1C, D2C and DULCOMARIN or direct connection to PCs and/or a PLC. If using a PLC, it has to have an electrically isolated input.

pH measuring transducer 4 ... 20 mA type pH V1

pH 0 ... 14

Measuring error

< 0.1 pH (typ. ±0.07 pH)

Socket

SN₆

Input resistance

 $> 5 \times 10^{11} \Omega$

Signal output

4 ... 20 mA \approx -500 ... +500 mV \approx pH 15.45 ... -1.45 uncalibrated; not

electrically isolated

DC supply voltage:

18...24 V DC

Permissible ambient temperature

-5...50 °C, non-condensing

Degree of protection

Dimensions

Ø 25

141 mm (length), 25 mm (diameter)

pH measuring transducer 4 ... 20 mA type pH V1

Order no. 809126

ORP measuring transducer 4 ... 20 mA type RH V1

Measuring range 0 ... 1,000 mV

Measuring error $< \pm 5$ mV (typ. ± 3 mV)

Socket SN6

Input resistance $> 5 \times 10^{11} \, \Omega$

4 ... 20 mA \approx -500 ... +500 mV \approx pH 15.45 ... -1.45 uncalibrated; not Signal output

electrically isolated

18...24 V DC DC supply voltage:

Permissible ambient temperature -5...50 °C, non-condensing

Degree of protection

Dimensions 141 mm (length), 25 mm (diameter)

Order no. ORP measuring transducer 4 ... 20 mA type RH V1 809127

Temperature measuring transducer 4 ... 20 mA type Pt100 V1

Measuring range 0 ... 100 °C

Measuring error < ±0.5 °C (typ. ±0.3 °C)

Socket SN6 ~0 O Input resistance

 $4 \dots 20 \text{ mA} \approx 0 \dots +100 ^{\circ}\text{C}$ not electrically isolated Signal output

DC supply voltage: 18...24 V DC

Permissible ambient temperature -5...50 °C, non-condensing

Degree of protection IP 65

Dimensions 141 mm (length), 25 mm (diameter)

Order no.

Temperature measuring transducer 4 ... 20 mA type Pt 100 V1 809128

2.9 Accessories for Measuring and Control Devices

PEROX transducer

The PEROX transducer in μ processor technology serves to control and activate the PEROX sensor as well as to evaluate the sensor signal. It is screwed directly onto the sensor's head. The H_2O_2 transducer can be connected directly to the D1C control unit by means of a 3-wire signal lead.

The PEROX transducer has a length of approx. 205 mm and a diameter of 32 mm.

PEROX transducer for the H₂O₂ measurement:

Inside, it features a switch-over for three measuring ranges:

1 ... 20, 10 ... 200 and 100 ... 2,000 mg/l H₂O₂

Order no.
1047979

PEROX transducer V1 for D1Ca on request.

Accessories

	Order no.
Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

3.1 Overview of Ordering System for Measuring and Control Points DULCOTROL DWCa

3.1.1 Selection Guide

DULCOTROL DWCa_P Potable water/F&B

Treatment of potable water, water similar to potable water and treatment of rinsing water, process water in the food and beverage industry

- Disinfection
- Cleaning In Place (CIP)
- pH value adjustment
- Monitoring

DULCOTROL DWCa W Waste water

Treatment of industrial and municipal waste water

- pH neutralisation
- Disinfection
- Detoxification
- Desalination of process water
- Control of dissolved oxygen
- Monitorina

3.1.2 Description of the Identity Code Specifications in the DULCOTROL DWCa Ordering System

The measuring and control systems can be configured using the respective identity code ordering system. With the "panel-mounted" design, all the components except the sensors are mounted on a polypropylene panel. The DULCOTROL ordering system works with user-based selection criteria so that you can select the most appropriate measuring and control station, largely without any serious technical understanding. One or two measured variables can be configured in each product range. The DACb controller is now used instead of the DACa controller for all measured variables. The Compact controller DCCa is also configured for inductive conductivity. This means that a third measured variable can be configured on site providing the fitting size permits this. An additional DGMa module is provided as standard. All communication interfaces of the DACb and also the connection to DULCONNEX can also be selected as part of the ordering system. The identity code specifications are explained in more detail below. The content and scope of delivery contained in the specifications are described in Chapter 3.1.3 (Technical description of the scope of delivery).

Specification: "Application"

The "Application" specification is used to define the application ("potable water", "waste water") in which the measuring and control system is deployed. This defines the types of sensors and fittings.

Specification: "Water to be measured"

This is used to further characterise the sample water (e.g. "clear water" or "turbid water") selected via the main application (e.g. potable water, waste water). The sensor type, measuring range (e.g. CLE 3-mA-2ppm) and fitting (e.g. DGMA) are defined in conjunction with the main application.

Specification: "Measured variable 1" and "Measured variable 2"

These are used to determine the measured variable to be measured or controlled (e.g. pH or chlorine). Up to two measured variables can be selected at the same time within the scope of the specified options. This defines the sensor class (e.g. pH sensor or chlorine sensor) and the controller suitable for the measured variable and the appropriate measuring cable. We use the diaLog DACb controller for all measured variables apart from conductivity. We configure the Compact conductivity controller for the measured variable conductivity. The possible combinations of measured variables are listed in the tables in the "Technical description of the scope of delivery" chapter.

Specification: "Measurement and control"

This determines whether only the measuring function or the complete two-way control function for the selected measured variable is shown on the controller.

Specification: "Communication interface"

This specification defines which communication interface the controller has.

Specification: "Data logger"

A data logger is pre-installed as standard.

Specification: "Hardware upgrade"

This specification defines whether a protective RC circuit is fitted to protect relays exposed to high loads.

Measuring and Control Systems for Potable Water and Waste Water Treatment

3.1 Overview of Ordering System for Measuring and Control Points DULCOTROL DWCa

Specification: "Sensor equipment"

This specification determines whether the measuring/control panel is supplied with or without sensors. If "with sensors" is selected, the sensors are also supplied in the original packaging. Select "without sensors" if the types of sensor supplied as standard (see chapter 3.1.3: Technical description of the scope of delivery) cannot be used (for example: Inapplicable measuring range) or if the measuring plates are to be stored.

Specification: "Design"

This specification defines customer-specific designs e.g. the label etc.

Specification: "Sample water preparation"

This specification defines whether a filter is fitted.

Specification: "Certification"

This specification defines the approvals and certificates.

Specification: "Documentation"

This specification defines the operating language of the controller and the operating instructions.

3.2.1 Overview of DULCOTROL DWCa_Potable Water/F&B

The compact measuring and control system for the reliable monitoring and treatment of water of a similar quality to drinking water

Monitoring and treatment of potable and similar types of water with DULCOTROL Potable water/ F&B – the compact measuring and control system specially designed for water treatment in waterworks and in the food and beverage industry.

Measuring and control systems DULCOTROL for the potable water/F&B application are specially tailored to the potable water sector and the food and beverage industry. In addition, they also meet the particular requirements within these sectors: on the one hand, for potable water/product water treatment and, on the other hand, for the treatment of rinsing water, industrial water and process water. The measuring and control systems can be configured using the relevant identity code ordering system. With the "panel-mounted" version, all of the components except the sensors are mounted on a polypropylene plate. The DULCOTROL ordering system works with user-based selection criteria so that you can select the most appropriate measuring and control system, largely without technical knowledge. One or two measured variables can be configured in each product range.

Your Benefits

- A third measuring point can be retrofitted on site if the size of the configured bypass fitting permits this.
- All communication interfaces of the DACb controller and connection to DULCONNEX are possible.
- Availability of all key chemical measuring parameters for water treatment
- Application-optimised configuration of the components using user-based order criteria
- Configuration of 1 or 2 complete measuring and control systems on a panel
- The controller equipment can be selected
- Flexible adaptation to special applications and measuring ranges by designing the measuring and control points without sensors and ordering the sensor type and measuring range separately
- Ready-to-connect plug & play measuring and control points for quick, easy installation and commissioning
- Extensive optional accessories (pressure reducers, filters, heat exchangers, sample water pump)

Technical Details

- Installation in the bypass of the main water line through which the medium flows
- Max. pressure, depending on design: 1 bar/3 bar/6 bar
- Flow, depending on design: 15...40 l/h/ 40...65 l/h/
- Max. medium temperature: primarily up to 45 °C, the versions for the identity code specification: Water to be measured H (hot water) up to 65 °C (max. 2 bar)
- Ambient temperature: +5...50 °C
- Degree of protection: IP65
- Power supply: 90-240 V, 50/60 Hz

Field of Application

- Treatment of drinking water and product water (e.g. disinfection) in waterworks and domestic water installations
- Treatment of product water in the food and beverage industry
- Treatment of rinsing and process water for the food and beverage industry, e.g. cleaning and disinfection of pipework, vessels and machinery (cleaning in place)
- Monitoring for drinking water distribution

3.2.2 Permissible Measured Variable Combinations for DULCOTROL DWCa_P Potable Water/F&B

Sample water 1: Drinking water, product	water														
Measured variable 1		Mea	sured v	ariable/	2										
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine < pH 8	C0	Х			X	Χ	X	X							
Free chlorine > pH 8	C1	×			X	X	X	X							
Total chlorine (free and combined chlo-	G0	Х				X	X								
rine)															
рН	P0	X				X									
ORP	R0	Х				X									
Chlorine dioxide	D0	Х				X	X		Χ						
Chlorite	Ю	Х													
Conductivity	L0	X				X	X								
Ozone	Z0	Х				X	X								
Fluoride	F0	Х				Х									
Hydrogen peroxide	H0	Х				Χ									
Peracetic acid	A0	X				Χ				X					
Dissolved oxygen	X0	Х				X									

Sample water 2: Rinsing water, process water															
Measured variable 1		Meas	sured v	ariable/	2										
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	HO	Α0	X0
Free chlorine > pH 8	C1	Х				X	X								
Total chlorine (free and combined chlo-	G0	X				Χ	X								
rine)															
рН	P0	Х				X									
ORP	R0	X				X									
Chlorine dioxide	D0	Х				X	X								
Chlorite	10	X													
Conductivity	LO	Х				Χ	X								
Ozone	Z0	X				X	X								
Fluoride	F0	Х				X									
Hydrogen peroxide	H0	X				Χ									
Peracetic acid	Α0	×				X				X					

OI- II D-I-III	Sample water H: Potable and product water, 45 °C65 °C														
Sample water H: Potable and pro	duct water, 45	°C6	5 °C												
Measured variable 1		Mea	sured \	/ariable	2										
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine	CO	Х				X									
рН	C1	Х				X									
ORP	P0	х				X									
Conductivity	R0	X				X	Х								

When ordering, state the identity code in the above order of measured variable 1/measured variable 2, e.g. DWCa P... C0_P0... and not DWCa P... P0_C0...

Other measured variable combinations on request.

3.2.3 Identity Code Ordering System, DULCODOS DWCa_P Potable Water/ F&B

DWCa	Application	1												
	Р	Potable	water											
1		Water to	be measi	ured										
İ		1	Potable		oduc	t wate	er							
		2	Rinsing v					roces	ss w	ater				
		H										ed va	ariah	oles C1, P0, R0, L0 only)
			Measure											
			C0	Free ch		la > e	18							
İ			C1	Free ch										
İ			G0	Total ch			e+co	mbin	ed o	chlor	ine)			
1			P0	рН							,			
1			R0	ORP										
1			D0	Chlorin	e dio	xide								
1			10	Chlorite										
			LO	Condu	ctivity	,								
			Z0	Ozone										
			F0	Fluoride										
			H0	Hydrog			de							
			A0	Perace	tic ac	id								
			XO	Dissolv										
				Measu			e 2 (c	optio	nal)					
				00	Non									
				C0		chlo		<ph< th=""><th>8</th><th></th><th></th><th></th><th></th><th></th></ph<>	8					
				C1		chlo		,,						
				G0		ıl chlc	rine i	(tree-	+cor	mbin	ed o	chlor	ine)	
				P0	pH	,								
				R0	ORF		dia: '	46						
				D0	1	orine (uIOXI(ле						
				IO LO		orite Iducti	vity.							
				Z0	Ozo		vity							
				F0		ride								
				HO		roger	n per	oxide	ż					
				A0		acetic								
				XO		olvec								
						surin			olling	q				
					9						s tw	O-W	ay c	controllable
				İ		Con	nmur	nicati	on ir	nterf	ace			
						0	non	ie						
						Α		dbus						
						В	1	OFIB						
						E						r, co	nne	ction via M12 C coded
						G		finet						
						D					ppe	ars i	n tn	e scope of delivery as a separate unit)
						ŀ		a log	-		va rith	mo	0011	red value display on SD card
								Hard	_					red value display on 3D card
								_						it for output relay
										sor				i di dapat i day
										With				
									1	With	nout	sen	sor	S
										Vers				
														nted with ProMinent Logo
														ter treatments
												non		
														ter, Not for measured variable D0, Z0
			1									App	rov	(Ctandard)
			1									U1		(Standard)
														Cumentation language German
														German English
														Spanish
														Italian
			1											French
														Finnish
														Bulgarian
														Chinese
														Czech
														Danish
													EE	Estonian
	1													Greek
1							1	ı I				1	lни	der and a second
									- 1					Hungarian
													JΡ	Japanese
													JΡ	

						LT	Lithuanian
						LV	Latvian
				ı		NI	_ Dutch
				-		PL	Polish
				İ	İ	Pī	Portuguese
						R	D Romanian
						RI	J Russian
						SE	Swedish
						Sł	K Slovakian
						SL	Slovenian
						S١	/ Swedish
						T⊦	H Thai

Third measured variable can always be retrofitted on site with the DGMa (additional module is provided). With the DLGIII: an amperometric measured variable and up to two measured variables with PG13.5 connector are available

Permissible measured variable combinations for DULCOTROL DWCa_P Potable water/F&B, see page \rightarrow 240

3.2.4

Examples of DULCOTROL DWCa_P Potable Water/F&B

Similar figure

Example 1: DWCa_P_1_D0_I0_9_G_1_0_0_0_01_DE

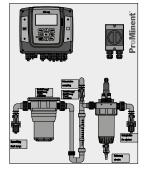
Application in potable water/F&B:

Measurement of chlorine dioxide and chlorite in potable water/product water with an upstream filter (10μm). Controller with integrated data logger and Profinet® communication interface.

Controlle

DACBW006VA4000G11010DE

Fitting


- DGM_A_3_2_0_T_0_0_2:
 - 1 measuring module: Chlorine dioxide sensor
 - 1 measuring module: Chlorite sensor
 - 1 flow control module

Sensors

- CDE-2-mA 0.5 ppm
- CLT1-mA-0.5 ppm

Panel-mounted water treatment system

Filter

Similar figure

Example 2: DWCa_P_2_P0_C0_9_0_1_1_0_0_1_01_DE

Application in potable water/F&B:

Two-way control of pH and chlorine in rinsing water. The sample water is filtered through a 100 μ m filter. The controller contains an RC circuit to protect the relays and a data logger.

Controller

DACBW006VA4000011010DE

Fitting

■ DLG III for pH and chlorine monitoring + flow control

Sensors

- CBR1-mA 2ppm
- PHER 112-SE

Panel-mounted water treatment system

Filter

3.3.1 Overview of DULCOTROL DWCa_W Waste Water

The compact measuring and control system for the reliable monitoring and treatment of waste water

Monitoring and treatment of waste water with DULCOTROL Waste Water – the compact measuring and control system specially designed for applications in municipal and industrial waste water treatment.

The DULCOTROL measuring and control systems for the waste water application are used in all industry sectors where waste water is treated. All the necessary components are mounted on a polypropylene plate and are ready to connect. The choice of components is matched to the application. The measuring and control systems can be configured using the relevant identity code ordering system. With the "panel-mounted" version, all of the components except the sensors are mounted on a polypropylene plate. The DULCOTROL ordering system works with user-based selection criteria so that you can select the most appropriate measuring and control system, largely without technical knowledge. One or two measured variables can be configured in each product range.

Your Benefits

- A third measuring point can be retrofitted on site if the size of the bypass fitting permits this.
- All communication interfaces of the DACb controller and connection to DULCONNEX are possible.
- Availability of all key chemical measuring parameters for water treatment
- Application-optimised configuration of the components using user-based order criteria
- Configuration of 1 or 2 complete measuring and control systems on a panel
- The controller equipment can be selected.
- Flexible adaptation to special applications and measuring ranges by designing the measuring and control points without sensors and ordering the sensor type and measuring range separately
- Ready-to-connect plug & play measuring and control points for quick, easy installation and commissioning
- Extensive optional accessories (pressure reducers, filters, heat exchangers, sample water pump)

Technical Details

- Installation in the bypass of the main water line through which the medium flows
- Max. pressure, depending on design: 1 bar/3 bar/6 bar
- Flow, depending on design: 15...40 l/h/ 40...65 l/h/ 300...500 l/h
- Max. medium temperature: primarily up to 45 °C, the versions for the identity code specification: "Water to be measured" "H" (hot water) up to 65 °C (max. 2 bar)
- Ambient temperature: +5...50 °C
- Degree of protection: IP65
- Power supply: 90-240 V, 50/60 Hz

Field of Application

- Treatment of industrial and municipal waste water
- pH neutralisation
- Disinfection
- Detoxification
- Desalination of process water
- Control of dissolved oxygen
- Monitoring

3.3.2 Permissible Measured Variable Combinations for DULCOTROL DWCa_W Waste Water

Sample water 4,5,7: clear and turbid waste water containing fluoride															
Measured variable 1		Meas	sured v	/ariable	2										
		00	C0	C1	G0	P0	R0	D0	10	LO	Z0	F0	H0	A0	X0
Free chlorine > pH 8	C1	Х				X	X								
Total chlorine (free and combined chlo-	G0	Х				Х	X								
rine)															
рН	P0	х				X									
ORP	R0	x				X									
Chlorine dioxide	D0	х				X	X								
Chlorite	10	х													
Conductivity	LO	Х				X	X								
Ozone	Z0	Х				Х	X								
Fluoride	F0	х				X									
Hydrogen peroxide	H0	x				Х									
Peracetic acid	A0	х				Χ				X					

Sample water H: clear and turbic	Sample water H: clear and turbid waste water containing fluoride 45 °C65 °C														
Measured variable 1		Mea	sured v	/ariable	2										
		00	C0	C1	G0	P0	R0	D0	10	LO	Z0	F0	H0	Α0	X0
Free chlorine	C1	Х				X									
рН	P0	X				X									
ORP	R0	х				Χ									

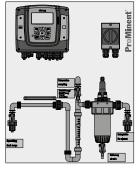
When ordering, state the identity code in the above order of measured variable 1/measured variable 2 i.e. DWCa W... $C0_P0...$ and not DWCa W... $P0_C0...$

Other measured variable combinations on request.

3.3.3 Identity Code Ordering System, DULCOTROL DWCA_W Waste Water

West value of which the content of t	DWCa	Application															
Wheter to be missured It is a water to max. 65 °C, all max. 2 tar (measured variables C1. PD, R0.1 0 cmly) Clare value value. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and pt is 7. Values water, claim in listed with fluorist content and value display on SD card in listed with an account of delivery as a secondo until bear wate	Divoa			ater													
H H Water for max. 50 °C at max. 2 for /measured variables C I, PiQ, RD, LD only) 6 Water water with safety patients featured, suited 7 Water water with safety patients featured and pH < 7 10		!!!			ured												
4 Octave vester vester 5 Waster water, cear or further don'th surcise content and peri < 7 Waster vester, cear or further don'th surcise content and peri < 7 Waster vester cear or further don'the surcise content and peri < 7 Waster vester cear or further don'the surcise content and peri < 7 Waster vester cear or further don'the surcise content and peri < 7 October 1 October 1 October 1 October 1 October 2 October 3 October 3 October 3 October 4 October 4 October 4 October 5 October 5 October 6 October 6 October 7 October 7 October 7 October 7 October 7 October 8 October 9						k. 65	°C, at	max	. 2 b	ar (r	nea	sure	ed va	ariables C1, P0, R0, L0 only)			
Wasserver, clear or turbial with fluorice content and phil < 7 Measured strained C1 Fire christine C2 Call christine (Ree-combined chrismine) C3 Call christine (Ree-combined chrismine) C4 Call christine C5 Call christine C6 Call christine C7 Call christine C7 Call christine C8 Call christine C8 Call christine C8 Call christine C8 Call christine C8 Call christine C8 Call christine C8 Call christine C9 Call chr				1						,							
Measured variable 1 C1 Fire charine G0 Total citations (fines combined of fouring) Fig.				Waste wa	ater with	solic	l parti	cle fr	actio	n, tı	urbio	b					
Cot Fine chalaries Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res combined children) Cot State chalaries (res children) Cot State children (res children) Cot State chalaries (res children) Cot State children (res children) Cot State children (res c			7				turbid	with	fluor	ide	con	tent	and	d pH < 7			
Total charine Peter contribined chlorines																	
PO				!													
BO				1		nlorine	e (free	+con	nbine	ed c	hlor	ine)					
DO Chlorine LD Conductivity Cores Fig. Pluckish HD Systogen percedia AD Princes and State 2 (applicate) The State of St				1													
D. Chotete D. Comdentify D. Common File Hold Hydrogen percende Hold Hydrogen percende D. Common File AD Describer odd D. Describer odd D. Describer odd D. Describer odd D. Describer odd D. Describer odd D. Describer odd D. Describer odd D. Describer odd D. Chotetee D. Chotetee D. Chotet				1	!	- الم	- اماء										
1.0 Conductivity Cores				1	!		kiae										
20 Coorse Fig. Pluridae Fig. P				1	!												
Flo. Fluorists				!	!	Stivity											
Hydrogen peroxide Peravalule and dependent of the period of the peri					!	Э											
AD Pencedic and XX XX XX XX XX XX XX XX XX XX XX XX XX				НО	Hydrog	en pe	eroxid	е									
Measured variable 2 (optional) 00 None C1 Five chlorine G1 Five chlorine G2 Five Chlorine G3 Five Chlorine G4 Five Chlorine G5 Five Chlorine G6 Five Chlorine G6 Five Chlorine G7 Five Chlorine G7 Five Chlorine G7 Five Chlorine G8 Five Chlorine G8 Five Chlorine G8 Five Chlorine H10 Hydrogen poroxide A0 Peracetic acid X0 Dissolved oxygen Massuring - Centrolline G7 Five Chlorine G7 Five Chlorine G7 Five Chlorine G8 Five Chlorine F8 Five Chlorine F8 Five Chlorine F9				A0	Perace	tic ac	id										
OO Name CT Free Othorine On Total chlorine (free+combined chlorine) pt PO ORP DO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Chlorine dioxide IO Desolved oxygen Measuring - Centrolling IO Desolved oxygen Measuring - Centrolling IO Resolved oxygen IO Increa I LAN with web server, connection via M12 C coded IO Increa I LAN with web server, connection via M12 C coded IO ID DILICONNEX (appears in the scope of delivery as a separate until) Data logger I Data logger with measured value display on SD card Increase requirement IO With sensors I Within sensors I Without sensors I Without sensors I Without sensors I Without sensors I Within sensors																	
C1 Fine chlorine C1 Total chlorine (fee-combined chlorine) D1 Del chlorine dioxide C1 Chlorine dioxide C2 Canductivity C2 Canductivity C3 Canductivity C4 Canductivity C5 Canductivity C6 Canductivity C7 Canductivity C7 Canductivity C8 Paracella eard C8 Paracella eard C8 Described compan Measuring - Controlling S8 All reseasured variables two-way controllables C8 Canductivity was server, connection via M12 C coded G8 Portnet (2M12) D1 D D LO CONNEX (appears in the scope of delivery as a separate unit) D2 D LO CONNEX (appears in the scope of delivery as a separate unit) D2 D LO CONNEX (appears in the scope of delivery as a separate unit) D2 D LO CONNEX (appears in the scope of delivery as a separate unit) D3 D LO CONNEX (appears in the scope of delivery as a separate unit) D3 D LO CONNEX (appears in the scope of delivery as a separate unit) D4 D LO CONNEX (appears in the scope of delivery as a separate unit) D4 D LO CONNEX (appears in the scope of delivery as a separate unit) D4 D LO CONNEX (appears in the scope of delivery as a separate unit) D4 D LO CONNEX (appears in the scope of delivery as a separate unit) D4 D LO CONNEX (appears in the scope of delivery as a separate unit) D4 D LO CONNEX (appears in the scope of delivery as a separate unit) D4 D LO CONNEX (appears in the scope of delivery as a separate unit) D6 D LO CONNEX (appears in the scope of delivery as a separate unit) D6 D LO CONNEX (appears in the scope of delivery as a separate unit) D6 D LO CONNEX (appears in the scope of delivery as a separate unit) D6 D LO CONNEX (appears in the scope of delivery as a separate unit) D6 D LO CONNEX (appears in the scope of delivery as a separate unit) D7 D LO CONNEX (appears in the scope of delivery as a separate unit) D8 D LO CONNEX (appears in the scope of delivery as a separate unit) D8 D LO CONNEX (appears in the scope of delivery as a separate unit) D8 D LO CONNEX (appears in the scope of delivery as a separate unit) D8 D LO CONNEX (appears in the scope of delivery as a separate unit) D8 D LO CONNEX (appears								2 (optional)									
Total cinkonne (free-combined chlorine) pH RO ORP DO Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Chlorine dioxida ID Elizonida ID Descoved oxygen ID Descoved ox					!			inc									
PO ORP DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Chlorina dioxide DO Description DO DEscription DO Description DO D					!				froo ·	.000	nhin	<u></u>	shlor	rine)			
Display Disp							UIIIO	I€ (I		UUI	ן ווטוו	JU (אטוו וכ	птој			
Ochorine double O Chorine LO Conductivity Conductivity Conductivity Response of Home Hydrogen peroxide Peroxide acid Dissolved oxygen Messagnery - Controlling Messagnery - Controlling Ochorine - A Modobus FTU, terminal E LAN with web server, connection via M12 C coded G Periner (Zwith) D DULCONINEX (appears in the scope of delivery as a separate unit) Data logger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sensor equipment Sensor equipment O With sensors Version Version O Inone 1 With filter, Not for measured variable D0, 20 Approvals O1 DC (Standard) D DC (Standard) D DC (Conductivity) D DC (Standard) D DC						1.)										
Chloride Condicitivy Cozone File Communication Code					!			lioxid	le								
Communication interface					10												
Fundable Hydrogen peroxide AD Perracetic acid Dissolved oxygen Measuring - Controlling 8								/ity									
HO AD Presente acid Dissolved oxygen Measuring - Controlling 9 All measured variables two-way controllable Communication interface 0 none A Modbus RTU, terminal E LAN with web server, connection via M12 C coded G Profinet (2xM12) D DULCONNEX (appears in the scope of delivery as a separate unit) Data loager 1 Data loager 1 Protective RC circuit for output relay Sensor equipment 0 With sensors 1 Without sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 I with filter. Not for measured variable D0, 20 Approvals 01 CE (Standard) Decumentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CM Chinesse C2 Czech DC Danish EE Estonian GR Greek HU Hungarian JP Japanesee KR Korean LT Lithuanlan					!												
AD Persocitic acid Dissolved oxygen Messauring - Controlling 9 All messured variables two-way controllistle Communication interface 0 none A Modbus RTU, terminal E LAN with web server, connection via M12 C coded G Profinet (2M12) D DULCONNEX (appears in the scope of delivery as a separate unit) Data logger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sensor equipment 0 With sensors 1 Without sensors Wersion D Ranel-mounted with ProMinent Logo Sample water treatments 0 none 1 With filter, Not for measured variable DO, 20 Approvals O1 CIC (Standard) D Commentation language DE German RF French FF F					!												
Dissolved oxygen Measuring - Controlling 9 All measured variables two-way controllable Communication interface 0 none A Modbus RTU, terminal E LAN with web server, connection via M12 C coded G Profinet (ZxM12) D DULCONNEX (appears in the scope of delivery as a separate unit) Distal logger 1 Data logger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sensor equipment Sensor equipment Sensor equipment O With sensors Wersion O Panal-mounted with ProMinent Logo Sample water freatments O none 1 With filter, Not for measured variable D0, 20 Approvals O1 CE (Standard) Documentation language DE German EN English ES Spanish TI Italian TR Italian T					!		_		xiae								
Measuring - Controlling 9 All measured variables two-way controllable Communication interface 0 In none A Modbus RTU, terminal E LAN with web server, connection via M12 C coded G Profinat (2M12) D DULCONNEX (appears in the scope of delivery as a separate unit) Datal togger 1 Data togger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sensor squipment 0 With sensors 1 Without sensors Wersion 0 Panel-mounted with ProMinent Logo Sample water treatments 0 Ince 1 With filter, Not for measured variable DO, ZO Approvials 01 DCE (Standard) Decumentation language DE German EN English ES Spanish IT Itation FR French F Fr									ien								
All measured variables two-way controllable										lling	1						
O none							1					s tw	0-W8	ay controllable			
A Modbus RTU, terminal E LAN with web server, connection via M12 C coded G Profinet (z/M12) D DULCONNEX (appears in the scope of delivery as a separate unit) Data logger 1 Data logger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sersor equipment 0 With sensors 1 Without sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 Inne 1 With filter, Not for measured variable D0, Z0 Approvals 0 In CE (Standard) Decumentation language DE German EN English ES Spenish IT Italian FR French F Finnish G B Bulgarian ON Chinese C2 Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuralian								_		n in	terfa	ace					
LAN with web server, connection via M12 C coded Profinet (2xM12) DULCONNEX (appears in the scope of delivery as a separate unit) Data logger 1 Data logger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sensor equipment 0 With sensors 1 Without sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 none 1 With filter, Not for measured variable D0, Z0 Approvals 01 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian ON Chinese 02 Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian										ידם	1 +-	rr~!	no!				
G Profinet (Z-M12) D DULCONNEX (appears in the scope of delivery as a separate unit) Data logger 1 Data logger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sensor equipment 0 With sensors 1 Without sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 none 1 With filter, Not for measured variable D0, Z0 Approvals 0 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French F Finnish BG Bulgarian ON Chrinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian														onnection via M12 C coded			
DULCONNEX (appears in the scope of delivery as a separate unit) Data logger 1 Data logger 1 Data logger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sensor equipment 0 With sensors 1 Without sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 In one 1 With filter, Not for measured variable D0, Z0 Approvals 01 IOC (Standard) Decumentation language DE German EN English ES Spanish IT Italian FR French FR							1						,	WITHOUGHT NO WILL O GOOGL			
1 Data logger with measured value display on SD card Hardware expansion 1 Protective RC circuit for output relay Sensor equipment 0 With sensors 1 Without sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 none 1 With filter, Not for measured variable D0, Z0 Approvals 01 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czeeh DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian													ars i	in the scope of delivery as a separate unit)			
Hardware expansion 1 Protective RC circuit for output relay Sensor equipment 0 With sensors 1 Without sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 In one 1 With filter, Not for measured variable D0, Z0 Approvals 01 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Itthuanian								Data	a logg	ger							
1 Protective RC circuit for output relay Sensor equipment 0 With sensors 1 Without sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 none 1 With filter, Not for measured variable D0, Z0 Approvals 0 Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian ON Chinese 0 Z Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanses KR Korean LT Ittluraian											_						
Sensor equipment 0 With sensors Version 0 Panel-mounted with ProMinent Logo Sample water treatments 0 Inone 1 With filter, Not for measured variable DO, ZO Approvals 01 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI French FI French FI Finnish BG Bulgarian ON Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
Without sensors Without sensors Without sensors Wersion O Panel-mounted with ProMinent Logo Sample water treatments O none 1 With filter, Not for measured variable D0, Z0 Approvals O1 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian ON Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LIthuanian LT LT LT LT LT LT LT L									-								
1 Without sensors Version												-					
Panel-mounted with ProMinent Logo Sample water treatments O none 1 With filter, Not for measured variable D0, Z0 Approvals O1 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT LIThuanian LT									- 1	- 1							
Sample water treatments O none																	
0 none 1 With filter, Not for measured variable D0, Z0 Approvals 01 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
1 With filter, Not for measured variable D0, Z0 Approvals 01 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
Approvals O1 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
O1 CE (Standard) Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
Documentation language DE German EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
EN English ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian														Documentation language			
ES Spanish IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
IT Italian FR French FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
FR French Fin Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian														1 1 '			
FI Finnish BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
BG Bulgarian CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
CN Chinese CZ Czech DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
DK Danish EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian														CN Chinese			
EE Estonian GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
GR Greek HU Hungarian JP Japanese KR Korean LT Lithuanian																	
HU Hungarian JP Japanese KR Korean LT Lithuanian																	
JP Japanese KR Korean LT Lithuanian																	
KR Korean LT Lithuanian																	
LT Lithuanian																	
	L						L		_	_							

							NL	Dutch
							PL	Polish
							PT	Portuguese
							RO	Romanian
							RU	Russian
							SE	Swedish
							SK	Slovakian
							SL	Slovenian
							SV	Swedish
							ТН	Thai


Third measured variable can be retrofitted on site: a total of one amperometric measured variable and up to two measured variables are possible with a PG13.5 connector. Permissible measured variable combinations for DULCOTROL DWCa_W Waste water see page \rightarrow 245

Measuring and Control Systems for Potable Water and Waste Water Treatment

3.3 Measuring and Control Points DULCOTROL DWCa_W Waste Water

3.3.4

Examples of DULCOTROL DWCa_W Waste Water

Similar figure

Example 3: DWCa_W_5_H0_00_9_A_1_1_0_0_1_01_DE

Waste water application:

Two-way control of the hydrogen peroxide in turbid waste water. The controller contains an RC circuit to protect the relays, a data logger and a Modbus RTU communication interface.

Controller

DACBW006VA4000A11010EN

Fitting

■ DLG III for hydrogen peroxide + flow control

Sensors

- H₂O₂ sensor PEROX H-3E-200ppm
- PEROX transducer V2
- Pt100 temperature sensor

Similar figure

Example 4: DWCa_W_5_L0_P0_9_D_1_1_0_0_01_DE

Waste water application:

Two-way control of pH and measurement of conductivity in turbid waste water. The controller includes an RC circuit to protect the relays, a data logger and a DULCONNEX communication interface (appears in the scope of delivery as a separate unit).

Controller

- For pH: DACBW006L34000D11010EN
- For conductivity: Compact controller

Fitting

Piping + flow control

Sensors

- ICT 5
- PHER 112 SE

3.4 Technical Description of the Scope of Delivery of Measuring and Control Systems DULCOTROL DWCa

3.4.1 Technical Description of Controllers

(for more detailed information, see measuring and control technology chapter)

The DULCOMETER diaLog DACb controller is used to measure all measured variables with the exception of conductivity. The Compact controller is configured for conductivity measurement.

The DULCOMETER diaLog DACb controller used with the DULCOTROL DWCb can be selected as a single or two-channel controller. The third measuring channel can be configured on site, as required, providing the selected sensor fitting allows this. The following versions of the device can be separately selected using the DULCOTROL identity code ordering system:

■ Specification: Communication interface

This specification defines the type of communication interface on the controller.

Specification: Data logger

All controller versions include a data logger as standard.

Specification: Hardware upgrade

This specification defines whether a protective RC circuit should be available to protect relays subject to high loading.

Hardware version and identity code of diaLog DACb controllers:

	Identity code
Package 4, three measured variables by 2 no. mV/mA modules, without communication	DACBW006VA4000011010EN
Package 4, three measured variables by 1 no. mV/mA module and 2 no. conductive conductivity/temperature modules, without communication	DACBW006L34000011010EN
Package 4, three measured variables by 2 no. mV/mA modules, with Modbus RTU	DACBW006VA4000A11010EN
Package 4, three measured variables by 1 no. mV/mA module and 2 no. conductive conductivity/temperature modules, with Modbus RTU	DACBW006L34000A11010EN
Package 4, three measured variables by 2 no. mV/mA modules, with Profibus DPV1	DACBW006VA4000B11010EN
Package 4, three measured variables by 1 no. mV/mA module and 2 no. conductive conductivity/temperature modules, with Profibus	DACBW006L34000B11010EN
Package 4, three measured variables by 2 no. mV/mA modules, with LAN web server	DACBW006VA4000E11010EN
Package 4, three measured variables by 1 no. mV/mA module and 2 no. conductive conductivity/temperature modules, with LAN web server	DACBW006L34000E11010EN
Package 4, three measured variables by 2 no. mV/mA modules, with Profinet	DACBW006VA4000G11010EN
Package 4, three measured variables by 1 no. mV/mA module and 2 no. conductive conductivity/temperature modules, with Profinet	DACBW006L34000G11010EN

	Water to be measured	Identity code
Compact controller for conductive conductivity	1	DCCAW006L30010XX
Compact controller for inductive conductivity	2, 4, 5, 7	DCCAW006L60010XX

3.4 Technical Description of the Scope of Delivery of Measuring and Control Systems DULCOTROL DWCa

3.4.2 Technical Description of Sensors

(for more detailed information, see sensor technology DULCOTEST chapter)

The identity code specifications "Application", "Measured variable" and "Water to be measured" define the sensor type to be used as specified below in the tables.

If another sensor type is necessary, the measuring/control panel can also be supplied without sensors (see identity code specification: "Sensor equipment"). The desired sensor should then be ordered separately.

Sensor types for the defined "measured variable" and "water to be measured" specifications for the potable water ("P") application

Measured variable		Water to be measured	Sensor type	Order no.
Free chlorine with a pH value < 8	C0	1	CLE 3-mA-0.5 ppm	792927
Free chlorine with a pH value > 8	C1	2	CBR 1-mA-0.5 ppm	1038016
Free chlorine	C1	2	CBR 1-mA-2 ppm	1038015
Free chlorine	C1	Н	CLO 2-mA-2 ppm	1033878
Total chlorine	G0	1	CTE 1-mA-0.5 ppm	740686
Total chlorine	G0	2	BCR 1-mA-2 ppm	1040115
pH	P0	1	PHEP 112 SE	150041
рН	P0	2	PHER 112 SE	1001586
ORP	R0	1	RHEP-Pt-SE	150094
ORP	R0	2	RHER-Pt-SE	1002534
ORP combined with ozone: R0 Z0	Z0	1/2	RHEP-Au-SE	1003875
Chlorine dioxide (CIO ₂)	D0	1	CDE 2-mA-0.5 ppm	792930
Chlorine dioxide (temperature-corrected)	D0	2	CDR 1-mA-2 ppm	1033393
Chlorite anion (CIO ₂ -)	10	1/2	CLT 1-mA-0.5 ppm	1021596
Conductivity, conductive	LO	1	LFTK 1 DE	1002822
Conductivity, inductive	L0	2	ICT 5	1095248
Ozone	Z0	1/2	OZE 3-mA	792957
Fluoride (temp.corr.)	F0	1/2	FLEP 010-SE / FLEP 0100-SE	1028279
Fluoride (temp.corr.)	-	-	Measuring transducer 4-20 mA FPV1	1028280
Hydrogen peroxide	H0	1	H ₂ O ₂ sensor PEROX-H2.10 P	792976
-	-	-	PEROX Transducer V2	1047979
Hydrogen peroxide	H0	2	PER 1-mA-2000 ppm	1022510
Peracetic acid	A0	1	PAA 1-mA-200 ppm	1022506
Peracetic acid	A0	2	PAA 1-mA-2000 ppm	1022507
Dissolved oxygen	X0	1/2	DO 3-mA-20 ppm	1094609
рН	P0	-	PHEX 112 SE	305096
pH	P0	-	PHEF 012 SE	1010511
ORP	R0	-	RHEX-Pt-SE	305097
-	-	-	Measuring transducer 4-20 mA FP 100 V1	1031331

3.4 Technical Description of the Scope of Delivery of Measuring and Control Systems DULCOTROL DWCa

Sensor types for the defined "measured variable" and "water to be measured" specifications

for the waste water ("W") application

Measured variable		Water to be measured	Sensor type	Order no.
рН	P0	4	PHEP 112 SE	150041
pH	P0	5	PHER 112 SE	1001586
pH	P0	6	PHEX 112 SE	305096
рН	P0	7	PHEF 012 SE	1010511
ORP	R0	4	RHEP-Pt-SE	150094
ORP	R0	5	RHER-Pt-SE	1002534
ORP	R0	6	RHEX-Pt-SE	305097
ORP combined with ozone: R0 Z0	Z0	1/2	RHEP-Au-SE	1003875
Fluoride (temp.corr.)	F0	4/5/7	FLEP 010-SE / FLEP 0100-SE	1028279
-	-	-	Measuring transducer 4-20 mA FP 100 V1	1031331
-	-	-	Reference electrode REFP-SE	1018458
Conductivity, inductive	L0	4/5/6/7	ICT 5	1095248
Total chlorine	G0	4/5	BCR 1-mA-2 ppm	1040115
Free chlorine	C1	4/5	CBR 1-mA-2 ppm	1038015
Free chlorine	C1	Н	CLO 2-mA-2 ppm	1033878
Hydrogen peroxide	H0	4/5	PEROX H-3E-200 ppm	1105778
Temperature	-	-	Pt 100 SE temperature sensor	305063
Dissolved oxygen	X0	4/5	DO 3-mA-20 ppm	1094609
Ozone	Z0	4/5	OZE 3-mA	792957
Chlorine dioxide (temperature-corrected)	D0	4/5	CDR 1-mA-2 ppm	1033393
Peracetic acid	A0	4/5	PAA 2-3E-mA-2 ppm	1120263

3.4 Technical Description of the Scope of Delivery of Measuring and Control Systems DULCOTROL DWCa

3.4.3 Technical Description of Sensor Fittings

(for more detailed information, see sensor technology DULCOTEST chapter)

The bypass fitting used depends in particular on the water to be measured but sometimes also on the measured variable or the combination of measured variables.

Sensor fittings in DULCOTROL DWCa_P Potable water/ F&B

Fitting type DGMa is used in the DULCOTROL DWCa_P Potable water/F&B for all clear types of water similar to potable water. Fitting type DLG III is used for rinsing/process water with a turbid appearance in application "P"

Measured variable (sensor type)	Water to be measured	Fitting
Free chlorine	1	DGMa
Total chlorine	1	DGMa
pH	1	DGMa
ORP	1	DGMa
Chlorine dioxide (CDE 2)	1	DGMa
Chlorite	1	DGMa
Conductivity (conductive)	1	DGMa
Ozone	1	DGMa
Hydrogen peroxide	1	DGMa
Peracetic acid	1	DGMa
Dissolved oxygen	1	DGMa
Temperature	1	DGMa
Free chlorine	2	DLGIII
Total chlorine	2	DLGIII
рН	2	DLGIII
ORP	2	DLGIII
Chlorine dioxide (CDR)	2	DLGIII
Chlorite	2	DLGIII
Ozone	2	DLGIII
Hydrogen peroxide	2	DLGIII
Peracetic acid	2	DLGIII
Temperature	2	DLGIII
Inductive conductivity	2	ICT 5 in T-piece
Fluoride (temp.corr.)	1/2	DLGIV
Dissolved oxygen (DO3)	2	DLGIII

Sensor fittings in DULCOTROL DWCa_W Waste water

Fitting type DLGIII is used in the DULCOTROL DWCa_W Waste Water for all clear water or water with a minimal solid fraction.

Measured variable (sensor type)	Water to be measured	Fitting
Chlorine dioxide (CDE 2)	4/5	DLGIII
Fluoride (temp.corr.)	4/7	DLG IV (PVC) + magnetic stirrer
Dissolved oxygen (DO3)	4/5	DLGIII
Total chlorine	4/5	DLGIII
Conductivity, inductive (ICT 5)	6/5/4	Adapter for PVC pipe- DN 40 (bypass on plate)
Ozone	4/5	DLGIII
ORP	4/5	DLGIII
Temperature	4/5	DLGIII
Hydrogen peroxide	4/5	DLGIII
рН	7/5/4	DLGIII

3.4 Technical Description of the Scope of Delivery of Measuring and Control Systems DULCOTROL DWCa

3.4.4 Technical Description of the Hydraulic Connector/Pipework

An 8x5 mm hose connector is used as the sample water hydraulic connection for the "water to be measured" 1, 2, 4, 5, 7. Generally there is a shut-off ball valve fitted upstream and downstream of the bypass fitting. If ordered, a sample water filter is fitted upstream of the bypass fitting. The bypass fittings each contain a sampling tap. A metal pin is incorporated in the bypass fittings for potential equalisation.

3.4.5	Technical Description of Optional Accessories						
		Description	Water to be measured	Order no.			
	Adapter M34/PG13.5	For retrofitting pH/ORP sensor in free DGMa module	1, 2, 4, 5, 7	1050866			
	Filter housing		1, 2, 4, 5, 7	1045244			
	Filter element	100 μm	2, 4, 5, 7	1031211			
	Filter element	10 μm	1	1031210			
	Pressure reducer V 82	0.5 – 10 bar	2	1031212			
	Pressure reducer DO 6F 1/2"	0.5 – 10 bar	1	302104			
	Sample water pump von Taine	Max. flow 1800 l/h	1, 2, 4, 5, 7	1023089			
	0502 PP/FPM	Max. delivery height 4.5 m					

.1.1 Measuring and Control System DULCODOS Cooling Water

The compact measuring and control system for the reliable monitoring and treatment of cooling water in evaporation cooling systems.

Monitoring and treatment of cooling water with DULCODOS Cooling Water – the compact measuring and control system specially designed for the treatment of cooling water in evaporation cooling systems and wet separators.

The DULCODOS Cooling Water measuring and control systems with the AEGIS II controller are compact units for reliable monitoring and treatment of cooling water. They are available with various sensor configurations according to the statutory requirements applicable (e.g. in Germany the 42th Federal Immission Control Ordinance (BImSchV)).

Measuring all the necessary measuring parameters, such as conductivity, pH value, ORP voltage and the selective measurement of oxidative biocides, such as chlorine, chlorine dioxide or bromine concentration, enables optimum cooling water treatment. Optimum cooling water treatment is guaranteed by the volume-proportional addition of auxiliary chemicals, such as corrosion inhibitors or dispersants, the direct measurement of the corrosion properties of various metals and the indirect measurement of corrosion inhibitors by means of fluorescence sensors.

The device can be configured using the LAN and Wi-Fi function of the AEGIS II. The configuration process and result are displayed clearly using PCs, smartphones and tablets. A Modbus RTU interface and gateways to other fieldbuses enable connection to superordinate controllers and process control systems.

Your Benefits

- Ready-to-connect plug & play measuring and control point for quick, easy installation and commissioning
- Reduces cooling water consumption
- Protects the complete system against corrosion, deposits and biological growth
- Produces automatic reports in line with applicable directives and e-mails them out
- Connection to the DULCONNEX IIoT solution, developed by ProMinent.

Technical Details

- Installation in the bypass of the circulating water line through which the medium flows
- Max. pressure, depending on design: 1 bar up to 6 bar
- Sample water flow, depending on design: 15...40 l/h (with selective measurement of biocides) / 15...500 l/h
- Max. medium temperature: 45 °C
- Ambient temperature: +5...50 °C
- Degree of protection: IP 65
- Power supply: 90-240 V, 50/60 Hz

Field of Application

- Monitoring and treatment of cooling water from industrial plants, air conditioning systems
- Wet separator
- Similar applications

The measuring and control plate with the AEGIS II controller is a compact unit for the reliable monitoring and treatment of cooling water. Optimum cooling water treatment is guaranteed by measuring all the necessary measuring parameters, including conductivity, pH value, ORP value and oxidative biocides, such as chlorine, chlorine dioxide or bromine concentration as well as the volume-proportional addition of auxiliary chemicals, such as inhibitors or dispersants.

The AEGIS II uses a data logger to document the consumption of chemicals as well as the volume of additional water fed in and the bleed frequency. The reports based on these data can be sent daily by e-mail to up to 5 addressees. Furthermore, the AEGIS II can also e-mail alerts in the event of faults. This might include the maximum bleeding duration or the maximum metering volume being exceeded.

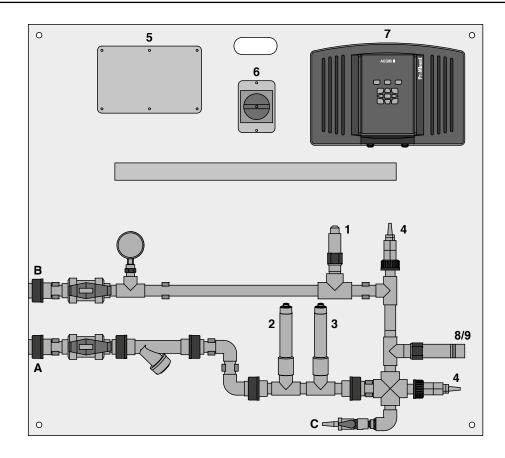
The Wi-Fi function of the AEGIS II allows the device to be configured and displayed clearly on a smartphone and tablet.

	PM-1, Order no. 1093705	PM-2, Order no. 1093706	PM-3, Order no. 1093707	PM-5, Order no. 1097168	PM-6, Order no. 1097170	PM-7, Order no. 1103171
Conductivity	+	+	+	+	+	+
pH measurement	+	+	+	+	+	+
ORP measurement	+	+	+	+	+	+
Flow switch	+	+	+	+	+	+
Corrosion measurement, copper		+	+		+	
Corrosion measurement, construction steel		+	+		+	
Fluorine sensor			+			
Chlorine measurement				+	+	
Pressure reduction				optional	optional	
DULCONNEX						+

Components

The measuring and control plate PM AEGIS II EU - type PM-1 comprising:

- AEGIS II controller, type AGIB006W0T1CTXXXXV2XXW0022001. Input for conductivity sensors (including temperature and flow), pH and ORP. Including Wi-Fi function and data logger. Control of a cooling tower with control of metering pumps.
- CTFS sensor for conductivity/temperature/flow, fully assembled, for measuring conductivity, temperature and flow.
- pH sensor PHEI-112-SE for the pH value measurement in industrial water containing solids.
- ORP sensor RHEIC-Pt-SE for the ORP value measurement in industrial water containing solids.
- Manometer for pressure display (also for flow control).
- 2 PVC ball valves for shutting off the feed and discharge line.
- Shut-off valve for draining the sample medium (no sample valve as not flammable).
- Filter insert 0.5 mm acting as a filter in the feed.
- Complete PVC pipework including brackets etc. and screw adapters for the sensors contained in the scope of delivery.


The measuring plate is supplied fully assembled and electrically wired. The measuring plate features an emergency stop switch and also has CE certification.

Dimensions of the measuring plate: 950 x 1,050 mm (HxW)

	Order no.
Measuring plate PM AEGIS 2 EU - type PM-1	1093705
Measuring plate PM AEGIS 2 EU - type PM-2	1093706
Measuring plate PM AEGIS 2 EU - type PM-3	1093707
Measuring plate PM AEGIS 2 EU - type PM-5	1097168
Measuring plate PM AEGIS 2 EU - type PM-6	1097170
Measuring plate PM AEGIS 2 EU - type PM-7	1103171

- CTFS sensor for conductivity/temperature/flow, fully assembled (order no. 1081727)
- 2 pH sensor PHEI 112 SE (order no. 1076610)
- 3 ORP sensor RHEI C (order no. 1082281)
- 4 Mounting points for corrosion sensor
- 6 Master switch
- 7 AEGIS® II cooling tower controller
- 8/9 Fluorosensor or chlorine sensor
- A Sample water feed, DN 20
- B Sample water drain, DN 20
- C Sampling

Measuring plate PM AEGIS 2 EU - type PM-1, basic version equipment, order no. 1093705

Item		Quantity	Order no.
7	AGIBEU006W0T1CTXXXXV2XXW0022001	1	1093713
1	CTFS sensor conductivity/temperature/flow complete	1	1081727
2	PHEI 112 SE	1	1076610
3	RHFIC-Pt-SF	1	1082281

Measuring plate PM AEGIS 2 EU - type PM-2, equipment additional to basic version, order no. 1093706

Item		Quantity	Order no.
7	AGIBEU006W0T1CTXXXXV2XXW0022001	1	1093713
4	Corrosion sensor basic CRS LPR	2	1092242
4	CRS-CS construction steel corrosion tip set	1	1092276
4	CRS-CU copper corrosion tip set	1	1092277

Measuring plate PM AEGIS 2 EU - type PM-3, equipment additional to basic version, order no. 1093707

Item		Quantity	Order no.
7	AGIBEU006W0T1CTXXXXV2XXW0022001	1	1093713
-	Fluorosensor Little Dipper® (Tracer Sensor)	-	1059104

Orderne

4.1 Measuring and Control System for Cooling Water Treatment

Measuring plate PM AEGIS 2 EU - type PM-5, equipment additional to basic version, order no. 1097168

Item		Quantity	Order no.
7	AGIBEU006W0T1CTXXD1V2AAW0022001	1	1093712
4	Corrosion sensor basic CRS LPR	2	1092242
4	CRS-CS construction steel corrosion tip set	1	1092276
4	CRS-CU copper corrosion tip set	1	1092277
9	CBR 1-mA-2 ppm	1	1038015

Important: The pressure reducing unit Order No. 1095885 is needed with pressures of more than 1 bar!

Measuring plate PM AEGIS 2 EU - type PM-6, equipment additional to basic version, order no. 1097170

Item		Quantity	Order no.
7	AGIBEU006W0T1CTXXXXV2XXW0022001	1	1093713
4	Corrosion sensor basic CRS LPR	2	1092242
4	CRS-CS construction steel corrosion tip set	1	1092276
4	CRS-CU copper corrosion tip set	1	1092277
9	CBR 1-mA-2 ppm	1	1038015

Important: The pressure reducing unit (order no. 1095885) is needed with pressures of more than 1 bar!

Measuring plate PM AEGIS 2 EU - type PM-7 with DULCONNEX, equipment additional to basic version, order no. 1097171

Item		Quantity	Order no.
7	AGIBEU006W0T1CTXXXXV2XXW0022001	1	1093713
1	CTFS sensor conductivity/temperature/flow complete	1	1081727
2	PHEI 112 SE	1	1076610
3	RHEIC-Pt-SE	1	1082281
5	DULCONNEX Gateway AGIb	1	1098723

Pressure reducing unit

Pressure reduction with system pressures of > 1 bar and chlorine sensors Ready mounted on a PP plate, pre-piped in PVC DN 20, shut-off ball valves at the inlet and outlet side, dimensions: H x W = 200 mm x 600 mm, consisting of the following main components:

	Quantity	Unit	Order no.	
Manometer NG 63 0-0006 bar 233.30.	1	EA	1040999	
Pressure reducing valve DMV755 DN20 PVC-U	1	EA	1095887	
FPM				

Corrosion sensors

The corrosion sensors work on the so-called LPR principle: linear polarisation resistance. A sensor consists of the corrosion sensor basic LPR. This is fitted with the metal (corrosion tip set) used in the application. The corresponding alloy factor needs to be set in the monitor. If there is corrosion on the metal then the sensor can measure this electrochemically and the monitor (AEGIS II) can display the value. The measurement is not an absolute measurement, rather it measures a trend. The advantage over gravimetric measurement is that the LPR measurement takes place without any time delay. The value is displayed by the monitor in the unit of measure MPY (mils per year). One mil corresponds to a thousandth of an inch, in metric terms 0.0254 mm.

	Order no.
Corrosion sensor basic CRS LPR	1092242
CRS-AM Admiralty brass corrosion tip set	1092274
CRS-CN Cu/Ni corrosion tip set	1092275
CRS-CS construction steel corrosion tip set	1092276
CRS-CU copper corrosion tip set	1092277
CRS-SS 1.4301/304 SS corrosion tip set	1092278
CRS-ZN zinc corrosion tip set	1092279

Fluorosensor

The Turner Designs Little Dipper® is a single-channel fluorosensor for measuring the concentration of fluorophor in process water. The metered chemical needs to contain PTSA for this. The sensor delivers a 4 - 20 mA output signal proportional to the concentration of the PTSA fluorophor in the process water.

Measuring principle: A light source irradiates the process water and stimulates the fluorophor in the solution, which emits light of a different wavelength. The intensity of the emitted light is proportional to the concentration of the PTSA fluorophor in the process water.

	Order no.
Fluorosensor Little Dipper® (Tracer Sensor)	1059104

Retrofit module

	Order no.
mA/mA output modules	1092565
2x conductivity temperature sensor input modules	1081809
mA/mA sensor input modules	1081806
2x mV/mV temperature sensor input modules	1081807
Module 2x serial sensor inputs	1092566
Modules mA/mV + temperature sensor inputs	1081808
Module Modbus RTU + 2 mA outputs	1094377
Module Modbus RTU + 2 mA outputs + 2 mA inputs	1094350
Wi-Fi module	734211

01.01.2023

5 1 1

Overview

New: The swimming pool metering systems DULCODOS Pool are now equipped with the new sensor bypass armature Modular BAMa.

The metering systems DULCODOS Pool ensure the best water quality. The systems come in four different designs. It's easy to work out which type is best suited to your requirements.

Chlorine or active oxygen?

Historically, swimming pool water has always been treated with chlorine. Because it is an effective disinfectant and is highly oxidising, chlorine is also the chemical of choice for public pools. Clear and hygienically safe water is guaranteed.

The metering systems DULCODOS Pool reliably keep the operating parameters in an optimum range. Unpleasant side-effects such as the smell of chlorine or burning eyes are very rare.

Active oxygen is less effective than chlorine. It can be used for very gentle and environmentally-sound water treatment in pools with fewer users.

Soft

DULCODOS Pool Soft is especially suited to private pools used by a small number of people. It works with active oxygen substances, which are less effective than chlorine. Water treatment with active oxygen is a good alternative for ecologically-minded pool owners or if users are allergic to chlorine. DULCODOS Pool Soft uses no chlorine chemicals.

Basic

DULCODOS Pool Basic regulates the pH and chlorine content using the redox potential. This is the direct measurement of effective oxidation in the water and is therefore an indication of the disinfectant effect and concentration of the metered chlorine. The concentration of chlorine cannot be determined with accuracy with this process. ORP measurements allow a particular range of chlorine to be set. DULCODOS Pool Basic is robust and requires little maintenance.

Comfort

DULCODOS Pool Comfort uses highly specific chlorine sensors to measure the chlorine content. The concentration of chlorine in the water can be determined and set with accuracy. The effectiveness of the swimming pool filter is boosted by an integrated feeder assembly for flocculant – resulting in crystal-clear water! Numerous features to enhance operating convenience make the metering system very popular with customers. These include mapping the measuring and calibration values via the integrated data logger or remote control from your PC using the integrated web server and, if you have a Wi-Fi access point connected, also using your iPad or other tablet devices.

Professional

DULCODOS Pool Professional comes in three designs:

DULCOMARIN 3 Compact Unit

is intended for controlling one filtration circuit. It can measure and regulate the pH, ORP, free chlorine, combined chlorine, total available chlorine and temperature measured variables.

DULCOMARIN 3 Multipool Global Unit

A DULCOMARIN 3 Multipool system consists of a Global Unit with a 7" touch display. It could be described as the central control unit via which all controllers of all pools, the Local Units, can be operated in full. There needs to be one Global Unit installed in each system yet there may only be one.

DULCOMARIN 3 Multipool Local Unit

A DULCOMARIN 3 Multipool system can control up to 16 filtration circuits, i.e. 16 Local Units with a 7" touch display are needed. The controller can be used to operate the local pool.

Every Local Unit controls one filtration circuit. They are connected to the Global Unit via cNet.

Choice of pumps

The metering systems DULCODOS Pool allow you to choose which metering pump to fit on your complete system. The choice of pump depends entirely on the size of your pool and how often it is used.

- Peristaltic pumps DULCOFLEX are suited to applications requiring few chemicals, such as small pools or those used infrequently. Bubbles of gas formed during periods of non-use are reliably eliminated by the pump. Depending on the amount of use, the metering hose has to be replaced once or twice a year.
- Motor-driven metering pumps alpha have a higher output and longer maintenance intervals. Like peristaltic pumps, they are silent.
- Solenoid metering pumps beta are not controlled by switching them on and off, like DULCOFLEX or alpha, instead, their metering frequency is adjusted continuously, enabling the pump to provide a very precise control action.
- Pumps with a CAN bus system can be used in the DULCODOS Pool Professional series. They communicate all operating messages, such as two-stage monitoring of the chemical reservoir, to the control.
- The flocculant metering pump is no longer part of the identity code. Please order a corresponding metering set to match your requirements.

Accessories

Whether you are looking for collection pans for chemical tanks or portable test devices for measurement parameters – or even software for digital control: the optional accessories make it even easier for you to operate the system.

Service

Installation, commissioning, training in how the system works, operation and maintenance: when you buy a DULCODOS Pool system, it comes with service you can rely on – even if your pool is already quite old.

5.1.2

Metering System DULCODOS Pool Soft

Ecologically convincing: chlorine-free water treatment with active oxygen in private swimming pools.

For swimming pools with volumes up to 100 m³

Chlorine-free water treatment system for environmentally operated private pools. Safe water disinfection with active oxygen as a turnkey complete solution.

Complete system DULCODOS Pool Soft for pH adjustment and chlorine-free disinfection with active oxygen. To prevent any germs in the pool from building up resistance to active oxygen, it is not metered continuously, but injected at intervals controlled by a timer.

Peristaltic pumps of the product range DULCOFLEX, alpha type motor-driven metering pumps or beta type solenoid metering pumps are used, depending on demand and the circulation volume.

When selecting the metering pump and pump capacity, please consider the concentrate of the hydrogen peroxide used. The concentration of the commercial product has been reduced in Germany by the legislature from wi = 32.8% to wi = 11.8%. The metering time and metering pump size need to be selected correspondingly to be able to meter volumes larger by a factor of 2.8. Depending on the product used, the metering volume is approx. 1.5 l per 10 m³.

Sensors, controllers and metering pumps form a unit with the chemical tanks, which can become operational without major installation work on your part.

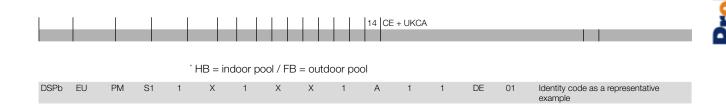
The control device offers many convenient functions, such as recording measured values on an SD memory card or remote access via the integral WEB server and LAN interface (now also available with DULCONNEX as an option).

Your Benefits

- Simple, quick assembly
- Simple, menu-driven operation
- Chlorine-free
- Constantly good water quality
- Versatile monitoring functions

Technical Details

- 2-channel swimming pool controller DACb with measurement/control of the pH value and metering of active oxygen using an integrated timer function, mounted on a wall panel ready for use.
- In-line probe housing with sample water monitoring, sample water filter and sensor for pH value
- Monitoring of the chemical supply
- Metering monitor to protect against over-metering
- Data logger with SD card (optional)
- Embedded web server with LAN interface (optional)
- Metering pumps alpha, DULCOFLEX or beta to control the pH value and active oxygen content.
- Sensors used pH sensor PHES 112 SE (150702)
- Connector for point of injection: Injection valves with 1/2" screw-in thread
- Connectors for metering pumps/points of injection: PVC hose 12x6 mm
- Sample water connector: PVC hose 12x6 mm
- Digital pause input
- Alarm relay output
- Electrical connection: 230 V AC, 50/60 Hz
- Dimensions with metering pumps alpha or beta:
 - $\,\blacksquare\,\,$ 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - 595 x 400 x 150 mm (W x H x D) mounting plate for pumps
- Dimensions with metering pumps DULCOFLEX: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg or 6 kg (without pumps)
- Sensors used: Order no. 1051745 pH sensor PHES-112-SE SLg100


Field of Application

Private swimming pool

Identity Code Ordering System for DULCODOS Pool Soft

DSPb	Regional design																
	EU Europe																
	US	USA															
		Version	,														
		PM	ProMiner				ass	arma	ture	BAM	а						
			Controlle														
			S1	pH/time													
			S2	pH/Per			٠,	al I									
				Measur 0					ъЦ	witho	urt o	ensors					
				1		S 112											
						sured					J1 02						
						No m			-		ORP						
						Measured variable 3, chlorine											
						X No measured variable chlorine											
						Measured variable, variable X No measured variable, variable											
							0						ole without sensors (only for S2)				
							Ρ						ment with PEROX-H2.10-P, order no. 792976 (PG 13.5) (only for S2)				
										funct	ions						
									none		iootic	on inte	food				
									- 1			Conne					
													OHz, European standard plug				
									- 1) Hz, Swiss plug				
									- 1) Hz, UK plug				
										_		_	mps for acids/alkalis				
										C	_		metering pump				
										1		,	DULCOFLEX DF2a 0208)				
										2			DULCOFLEX DF2a 0216)				
										3			DULCOFLEX DF2a 0224)				
										6			peta BT4b 0401 PVT)				
										7 8	- 1		peta BT4b 0402 PVT)				
										٦	_		peta BT4b 0404 PVT) g pumps for disinfection				
											0		nout metering pump				
											1		I/h DULCOFLEX DF2a for up to 45/10 m³/h circulation HB/FB*				
									ı		2		I/h DULCOFLEX DF2a for up to 90/20 m ³ /h circulation HB/FB*				
									İ		3		l/h DULCOFLEX DF2a for up to 140/30 m³/h circulation HB/FB*				
					İ				İ	İ	6	1.5	I/h beta4 b for up to 85/20 m³/h circulation HB/ FB*				
											7		l/h beta4 b for up to 160/35 m³/h circulation HB/ FB*				
											8		/h beta4 b for up to 260/55 m³/h circulation HB/ FB*				
													guage (operating instructions)				
													German Facilitati				
													English Bulgarian				
													Czech				
													Danish				
													Greek				
									ı				Spanish				
													Estonian				
													Finnish				
													French				
													Croatian				
													Hungarian				
													Italian				
													Japanese Korean				
													korean Lithuanian				
													Latvian				
													Dutch				
													Polish				
													Portuguese				
													Romanian				
												RU	Russian				
													Slovakian				
													Slovenian				
													Serbian				
													Swedish				
													Thai				
													Turkish				
													Chinese				
													Irrelevant				
													Approvals 01 with CE certification				
													5. mai 52 oorangaagri				

DULCODOS Pool Soft - disinfectants and measured variables

Measured vari- able 1 2 3 variable new DSPb	Measured variable predecessor DSPa	Disinfectant	Measured varia- bles
1 X X X	DO2	Active oxygen	рН
1 X X P	DO4	Active oxygen	pH + active oxygen

5.1.3

Metering System DULCODOS Pool Basic

Convenient and simple: pure water in private swimming pools - fully automatically and correctly.

For swimming pools with a circulation capacity of up to 200 m³/h

The chlorine metering system DULCODOS Pool Basic is a complete solution for private swimming pools where the chlorine content is controlled using the low-maintenance measurement of the ORP potential.

Complete system for the fully automatic adjustment of pH and chlorine content (using the measured variable redox potential) in swimming pool water. Depending on demand and the circulating volume, peristaltic pumps of the DULCOFLEX product range are used. Sensors, controllers and metering pumps form a single perfectly coordinated unit with the chemical tanks, which can reliably get to work without a lot of installation effort on your part.

New: With optional Wi-Fi stick, via which the controller can be configured and operated in conjunction with a smartphone app (iOS and Android).

Your Benefits

- Simple, quick assembly
- Simple, menu-driven operation
- Constantly good water quality
- Versatile monitoring functions

Technical Details

- 2-channel swimming pool controller Splash Control 2 with measurement, control and metering functions for pH and redox potential (chlorine metering)
- In-line probe housing with sample water monitoring, sample water filter and measuring probes for pH value and redox potential, fitted on a wall panel.
- 2 metering pumps DULCOFLEX
- Monitoring of the chemical supply
- Operation and configuration via app for iOS and Android. Auxiliary functions 8 Wi-Fi is needed (optional)
- Metering monitor to protect against over-metering
- Sensors used: pH sensor PHES 112 SE (150702), ORP sensor RHES-Pt -SE (150703)
- Connectors for points of injection: Injection valves with 1/2" screw-in thread
- Connectors for metering pumps/points of injection: PVC hose 12x6 mm
- Sample water connector: PVC hose 12x6 mm
- Digital pause input
- Modbus RTU (RS 485) as standard
- Alarm relay output
- Electrical connection: 230 V AC, 50/60 Hz
- Dimensions: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg

Field of Application

Private swimming pool

Identity Code Ordering System for DULCODOS Pool Basic

* HB = indoor pool / FB = outdoor pool

DSPb EU PM B1 1 A X X X X A 1 1 DE 01 Identity code as a representative example

DULCODOS Pool Basic - disinfectants and measured variables

Measured variable 1 2 3 variable new DSPb	Measured variable predecessor DSPa	Disinfectant	Measured varia- bles
1 A X X	PR2	Sodium hypochlorite, calcium hypochlorite	pH + ORP

5.1.4

Metering System DULCODOS Pool Comfort

Convenient and simple: crystal-clear water in private swimming pools.

For swimming pools with a circulation capacity of up to 225 m³/h

The chlorine metering system DULCODOS Pool Comfort is the convenient solution for pH adjustment and disinfection of swimming pools with liquid chlorine products. Remote access is possible via LAN interface.

Complete system DULCODOS Pool Comfort for pH adjustment and disinfection with liquid chlorine products. Peristaltic pumps of the product range DULCOFLEX, alpha type motor-driven metering pumps or beta type solenoid metering pumps are used, depending on demand and the circulation volume.

An integrated flocculant metering station (optional) ensures crystal-clear water.

Sensors, controllers and metering pumps form a unit with the chemical tanks, which can become operational without major installation work on your part.

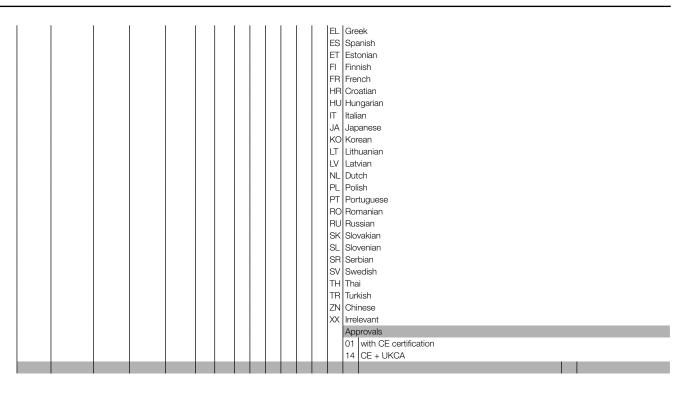
The control device offers many convenient functions, such as recording measured values on an SD memory card or remote access via the integral WEB server and LAN interface (now also available with DULCONNEX as an option).

Your Benefits

- Simple, quick assembly
- Simple, menu-driven operation
- Brilliant water quality
- Versatile monitoring functions

Technical Details

- 2-channel controller (pH/ORP or pH/chlorine) or 3-channel controller (pH/ORP/chlorine) Splash Control Pro* with measurement, control and metering functions for pH value and chlorine concentration, ready mounted on a wall panel
- Integrated flocculant metering station (optional)
- In-line probe housing with sample water monitoring, sample water filter and measuring probes for pH and chlorine content (DC2 for free chlorine, DC4 for free chlorine in the presence of isocyanuric acid stabiliser)
- Monitoring of the chemical supply
- Metering monitor to protect against over-metering
- Data logger with SD card
- Embedded web server with LAN interface (optional)
- Metering pumps alpha, DULCOFLEX or beta to control the pH and chlorine content, DULCOFLEX for flocculant metering (optional).
- Connector for point of injection: Injection valves with 1/2" screw-in thread
- Connectors for metering pumps/points of injection: PVC hose 12x6 mm
- Sample water connector: PVC hose 12x6 mm
- Digital pause input
- Alarm relay output
- Electrical connection: 230 V AC, 50/60 Hz
- Dimensions with metering pumps alpha or beta and/or with "flocculant metering" option:
 - $\,\blacksquare\,$ 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - 595 x 400 x 150 mm (W x H x D) mounting plate for pumps
- Dimensions with metering pumps DULCOFLEX: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg or 6 kg (without pumps)


Field of Application

High-quality private pool, hotel pool, public swimming pools

Identity Code Ordering System for DULCODOS Pool Comfort

DSPb	Regional d	esign																		
	EU	Europe																		
	US	USA																		
		Version PM	ProMiss	nt with	eanea	or hun	200	arm	aturo	RΛ	Ma									
		I IVI			rith sensor bypass armature BAMa nfiguration															
			C1	2 meas			cont	rol c	hanr	els	(DAC	b)								
	C2 3 measuring and control Measured variable 1, pH											b)								
	0 Measured variab 1 PHES 112 SE, o																			
				'		surec						2								
					X	1														
	0 Mea: A RHE									No measured variable ORP Measured variable ORP, without sensors										
										RHES-Pt-SE, order no. 150703										
			С				_		o. 10 chlor	044544 (only for C2)										
				X	1					e chlorine										
			0						llorine, without sensors											
						1					der no. 792920									
						2						der no. 1033392								
						3	1					order no. 792919 rder no. 1047959								
						6	1					order no. 1047975								
						7	1					cluding sensor cleaning, order no. 1033871								
						8	1					including sensor cleaning, order no. 1033870								
						9 A	1					ppm, order no. 1038015 ppm, order no. 1052138								
						В	1					10 ppm, order no. 1038014								
				ı						order no. 1018369										
						J						order no. 1019398								
						K						, order no. 1018368								
												ariable riable, variable								
												E 1-mA-2 ppm, order no. 740685								
							1					E 1-mA-10 ppm, order no. 740684								
									diliary non		ction	S								
								^	_		ınicat	ion interface								
											ndard									
											b sen									
											dbus	RTU								
											finet fibus									
												NNEX								
												Connection								
												V, 50/60 Hz, European standard plug								
												V, 50/60 Hz, Swiss plug V, 50/60 Hz, UK plug								
												ering pumps for acids/alkalis								
											0	Without metering pump								
												0.8 I/h (DULCOFLEX DF2a 0208)								
												1.6 l/h (DULCOFLEX DF2a 0216) 2.4 l/h (DULCOFLEX DF2a 0224)								
												1.8 l/h (alpha ALPc 1002 PVT)								
											5	3.5 l/h (alpha ALPc 1004 PVT)								
												1.5 I/h (beta BT4b 0401 PVT)								
												2.8 l/h (beta BT4b 0402 PVT) 4.5 l/h (beta BT4b 0404 PVT)								
												Metering pumps for disinfection								
												Without metering pump								
												1 0.8 I/h DULCOFLEX DF2a for up to 45/10 m³/h circulation HB/FB*								
												2 1.6 l/h DULCOFLEX DF2a for up to 90/20 m³/h circulation HB/FB* 3 2.4 l/h DULCOFLEX DF2a for up to 140/30 m³/h circulation HB/FB*								
												4 1.8 l/h alpha for up to 100/20 m³/h circulation HB/FB*								
												5 3.5 l/h alpha for up to 200/40 m³/h circulation HB/FB*								
												1.5 l/h beta4 b for up to 85/20 m³/h circulation HB/ FB*								
												2.8 l/h beta4 b for up to 160/35 m³/h circulation HB/ FB*								
												8 4.5 l/h beta4 b for up to 260/55 m³/h circulation HB/ FB* Language (operating instructions)								
												DE German								
												EN English								
												BG Bulgarian								
												CS Czech								
												DA Danish								

 * HB = indoor pool / FB = outdoor pool

DSPb EU PM C1 1 A 1 A X 6 A 1 1 DE 01 Identity code as a representative example

DULCODOS Pool Comfort - disinfectants and measured variables

Measured variable 1 2 3 variable new DSPb	Measured variable predecessor DSPa	Disinfectant	Measured varia- bles
1 A X X	DR2	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + ORP
1 C X X	DR3	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis, inline electrolysis	pH + ORP
1 X 1 X	DC2	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + free chlorine
1 X 5 X	DC4	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis, inline electrolysis	pH + total available chlorine
1 A 1 X	DC5	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + ORP + free chlorine
1 A 1 X	DC6	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis, inline electrolysis	pH + ORP + free chlorine
1 X 1 A	DC7	Trichloro-isocyanuric acid, sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + free chlorine + combined chlorine

5.1.5

Metering System DULCODOS Pool Professional

Professional and demanding: crystal-clear water in public swimming pools.

For swimming pools with a circulation capacity of up to 350 m³/h

Chlorine metering system for individual adjustment and monitoring of all common hygiene auxiliary parameters in public pools. DULCODOS Pool Professional ensures crystal-clear water quality and lowers operating costs thanks to Eco!Mode.

Complete system DULCODOS Pool Professional for individual adjustment and monitoring of all common hygiene auxiliary parameters in public pools, such as pH, redox potential and free and combined chlorine. Peristaltic pumps of the product range DULCOFLEX, alpha type motor-driven metering pumps or beta type solenoid metering pumps are used, depending on demand and the circulation volume.

An integrated flocculant metering station (optional) ensures crystal-clear water.

In Eco! Mode, the circulating volume of the swimming pool pumps is optimised depending on the water quality, enabling you to efficiently save energy.

The system can be easily integrated into a PLC or building control system thanks to the standard Modbus RTU interface. It can be easily operated by VNC server via LAN and optional Wi-Fi.

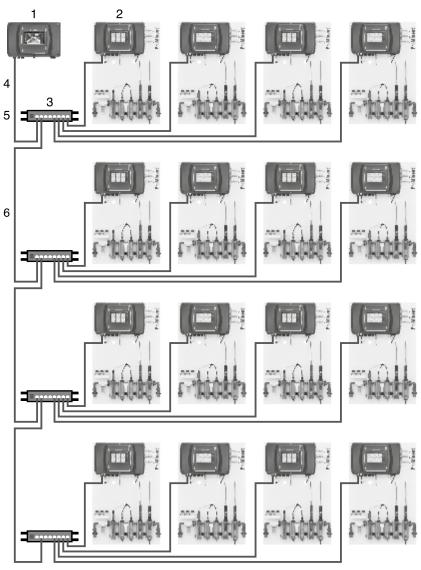
Sensors, controllers, metering pumps and the process chemical tanks form a single unit with the other peripheral swimming pool technology used, which gets to work without a lot of installation effort on your part.

Your Benefits

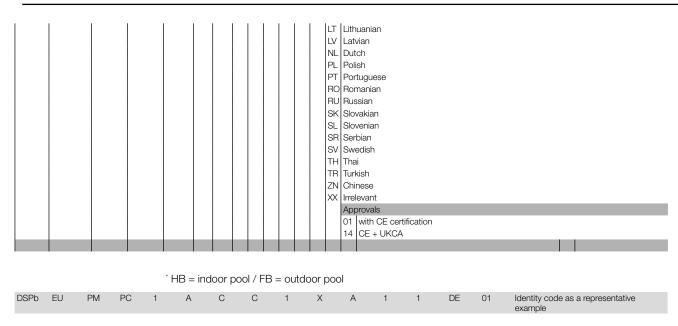
- Simple, quick assembly
- Brilliant water quality
- Eco!Mode helps cut operating costs
- Versatile communication interfaces
- Central control of peripheral devices and functions too

Technical Details

- Multi-channel, multi-parameter controller DULCOMETER DULCOMARIN 3 with measuring, control and metering functions for pH value, redox potential, free and combined chlorine in various combinations depending on the type, ready-wired for use and mounted on a wall panel
- Optional integrated flocculant metering station
- In-line probe housing with sample water monitoring, sample water filter and all sensors
- Monitoring of the chemical supply with pre-alarm
- Metering monitor to protect against over-metering
- Screen plotter for graphic mapping of measured values, data logger with USB connector
- Standard LAN interface with optional Wi-Fi interface for operation of the device by VNC app
- Modbus RTU for integration into building management systems, alarm function by text or e-mail (optional)
- Metering pumps alpha, DULCOFLEX or beta to control the pH and chlorine content, DULCOFLEX for flocculant metering (optional)
- Connector for point of injection: Injection valves with 1/2" screw-in thread
- Connectors for metering pumps/points of injection: PVC hose 12x6 mm
- Sample water connector: PVC hose 12x6 mm.
- Digital pause input
- 8 digital control inputs, for pause control, sample water errors and connecting chemical level switches
- CAN bus for connecting chlorine measuring cells and metering pumps beta and DULCOFLEX DF4a
- Temperature measuring input Pt 100/Pt 1000
- 6 output relay outputs, freely configurable
- 4 analogue outputs 0/4-20 mA, freely configurable (option B)
- Electrical connection: 230 V AC, 50/60 Hz.
- Dimensions of mounting plate for measuring technology without metering pumps and with metering pumps DULCOFLEX DF2a, the DF2a are also mounted on the mounting plate:
 - 595 x 745 x 150 mm (W x H x D)
- Dimensions of mounting plate for measuring technology without metering pumps and with metering pumps alpha, beta or DULCOFLEX:
 - 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - 595 x 400 x 150 mm (W x H x D) mounting plate for pumps
- Weight: approx. 12 kg or 7 kg (without pumps)


Field of Application

- High-end private pool
- Public swimming pool
- Therapy pool


Configuration example: Multipool system

- 1 Global unit
- 2 Up to 16 local units
- 3 LAN switch, e.g. TP-link 8 port switch
- 4 Connecting cable LAN M12 RJ45 5.0 m
- 5 LAN coupling IP68
- 6 Customer's LAN cable, up to 100 m in length

Identity Code Ordering System for DULCODOS Pool Professional

DSPb	Regional d	esign											
	EU	Europe											
	US	USA											
		Version	lp . Mr.	.1 20.						D 4 4			
		PM	ProMine Controlle				ass	arma	ature	BAN	/la		
			PC	Compa			DUL	CON	ΛAR	N 3)			
			PG	Global						-,			
			PL	Local L	ed va				3)				
				Measur									
				X 0	1	neasi					OLIT	sens	nsors
				1		S 11							
					Mea	surec	l var	iable	2, 0	RP			
					0	1							nout sensors
					A C	RHE							4544 (inline/tubular cell electrolysis)
						Mea			_				
						0							rine, without sensors
						C							order no. 1047977 rder no. 1023425
						E							order no. 1122056
						F	CL	O 1-	CAN	-10	opm	n, orc	order no. 1122057 (with cleaning balls)
						G							order no. 1023426
						Н							10 ppm, order no. 1029660 able
													variable, without sensors
							С				_		1-CAN-10 ppm, order no. 1023427
									diliary non	fund	ction	าร	
								1			ırd s	signa	nal outputs, 0/4-20 mA
													n interface
												_	Modbus RTU, LAN, Wi-Fi, OPC UA, BACnet® IP
										- 1			Connection 50/60 Hz, European standard plug
										- 1			50/60 Hz, Swiss plug
										- 6			50/60 Hz, UK plug
											$\overline{}$		ng pumps for acids/alkalis
										- 1	- 1		ithout metering pump 8 I/h (DULCOFLEX DF2a 0208)
										İ	- 1		6 I/h (DULCOFLEX DF2a 0216)
										- 1	- 1		4 I/h (DULCOFLEX DF2a 0224)
										- 1			5 I/h (beta CANopen BT4a 0401 PVT) 8 I/h (beta CANopen BT4a 0402 PVT)
										- 1	- 1		3 I/h (beta CANopen BT4a 0405 PVT)
										- 1			5 I/h (DULCOFLEX DF4a 04015 CAN bus)
											- 1		0 I/h (DULCOFLEX DF4a 03060 CAN bus)
													3 I/h (beta CANopen BT4a 0408 PVT) etering pumps for disinfection
											- 1		Without metering pump
												- 1	1.6 I/h DULCOFLEX DF2a for up to 90/20 m³/h circulation HB/FB*
												- 1	2.4 I/h DULCOFLEX DF2a for up to 140/30 m³/h circulation HB/FB* 1.8 I/h alpha for up to 100/20 m³/h circulation HB/FB*
													1.5 l/h beta4 a for up to 85/20 m³/h circulation HB/ FB*
												в	2.8 l/h beta4 a for up to 160/35 m³/h circulation HB/ FB*
													5.3 l/h beta4 a for up to 300/65 m³/h circulation HB/ FB*
												- 1	1.5 I/h DULCOFLEX DF4a for up to 85/20 m³/h circulation HB/FB* 6.0 I/h DULCOFLEX DF4a for up to 340/70 m³/h circulation HB/FB*
											- 1		19.0 l/h beta for up to 1050/225 m³/h circulation HB/ FB*
													Language (operating instructions)
												- 1	DE German
													EN English BG Bulgarian
												- 1	CS Czech
													DA Danish
												- 1	EL Greek
												- 1	ES Spanish ET Estonian
													FI Finnish
													FR French
												- 1	HR Croatian
												- 1	HU Hungarian IT Italian
													T Italian JA Japanese
												- 1	KO Korean

We recommend the use of ORP sensors with gold electrodes, RHES-Au-SE, order no. 1044544 when using tubular cells or inline electrolysis systems.

DULCODOS Pool Professional - disinfectants and measured variables

Measured variable 1 2 3 variable new DSPb	Measured variable predecessor DSPa	Disinfectant	Measured varia- bles
1 A X 0	PD5	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + ORP
1 X D 0	PD6	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + chlorine
1 A D 0	PD7	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + free chlorine
1 A C C	PD8	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + free chlorine + combined chlorine
1 X C 0	PD9	Trichloro-isocyanuric acid, sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + free chlorine
1 A C 0	PDA	Trichloro-isocyanuric acid, sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + ORP + free chlorine
1 A F O	PDO	Sodium hypochlorite, chlorine gas, calcium hypochlorite, membrane electrolysis	pH + ORP + free chlorine

5.2 Maintenance Kits

The following are needed for maintenance of a measuring, control and metering system DULCODOS Pool:

2 maintenance kits for the metering pumps

5.2.1 Maintenance Kits for Metering Pumps

The following table shows the assignment of the maintenance kits to the types of metering pumps used.

	Series	Туре	Order no.	
Hose 4.8 x 8.0 PharMed	DF2a	0208, 0216, 0224	1009480	
Hose 1.6 x 4.8 PharMed	DF4a	04015	1030722	
Hose 3.2 x 6.4 PharMed	DF4a	03060	1030723	
Spare parts kit 1005-2/1605-2 PVT	ALPc, BT4a	1002PVT/1004PVT (ALPc), 0405PVT (BT4a)	1023110	
Spare parts kits 1601 – 2 PVT, PPT, NPT	BT4a, BT4b	0401PVT (BT4a), 0401PVT (BT4b)	1023108	
Spare parts kits 1602 – 2 PVT, PPT, NPT	BT4a, BT4b	0402PVT (BT4a), 0402PVT (BT4b)	1023109	
Spare parts kits 0708 – 2/1008 – 2 PVT, PPT, NPT	BT4a	0408PVT	1023111	
Spare parts kit 9.2/33.5/12 x 9 PVT	BT4a	0220PVT	1023113	
Spare parts kits 1604 – 2 PVT, PPT, NPT	BT4b	0404PVT	1035332	

5.2.2 Buffer Solutions

Quality buffer solutions are provided for calibration of pH and ORP sensors.

The following table shows the assignment of the buffer solutions to the sensors.

	Measured variable	Order no.	
Buffer solution pH 4, 50 ml, red	рН	506251	
Buffer solution pH 7, 50 ml, green	рН	506253	
Buffer solution ORP 220 mV, 50 ml	ORP	506244	

Resistance of Materials Used in Liquid Ends to the Chemicals Most Frequently Used

This data applies to standard conditions (20 °C, 1,013 mbar).

S	saturated solution in water
+	resistant
+/0	practically resistant
0	conditionally resistant
-	not resistant
n	resistance not known
=>	see under
*	The resistance of the adhesive (e.g. Tangit) should be taken into account for bonded connections. (We would not recommend materials rated as 'o' and '-'!)
**	Does not apply to fibre glass-reinforced material

Concentrations are stated as weight percentages with reference to aqueous solutions. If the level of resistance is provided with a percentage figure, it only applies up to this concentration.

NOTE

The **CSM** (Hypalon®) and IIR (butyl rubber) elastomers used as the diaphragm materials in bladder dampers have similar characteristics to **EPDM**.

PTFE is resistant to all the chemicals in this list.

However, **PTFE filled with carbon** is attacked by aggressive oxidants such as bromine (anhydrous) or concentrated acids (nitric acid, sulfuric acid, chromic acid).

The resistance of PVC-U connections bonded with Tangit deviates from the list below for the following chemicals:

Medium	Concentration range
Chromo-sulfuric acid	$\geq 70 \% H_2SO_4 + 5 \% K_2Cr_2O_7/Na_2Cr_2O_7$
Chromic acid	≥ 10 % CrO ₃
Hydrochloric acid	≥ 25 % HCl
Hydrogen peroxide	≥ 5 % H ₂ O ₂
Hydrofluoric acid	≥ 0 % HF

Abbreviations used in the column designations:

Acrylic:	Resistance of poly(methyl methacrylate) (clear acrylic)
PVC:	Resistance of polyvinyl chloride, hard (PVC-U)
PP:	Resistance of polypropylene
PVDF:	Resistance of polyvinylidene fluoride (PVDF)
1.4404:	Resistance of stainless steel 1.4404, 1.4571 and 1.4435
FKM:	Resistance of fluorine rubber (e. g. Viton® A and B)
EPDM:	Resistance of ethylene propylene diene monomer
PharMed®:	Resistance of PharMed®
PE:	Resistance of polyethylene
2.4819:	Resistance of Hastelloy C-276
WGK:	Water hazard class

Viton® is a registered trademark of DuPont Dow Elastomers

Water Hazard Classes (WGK):

The data has been taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of materials also depends on other factors (operating conditions, state of surface etc.), this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional feed chemicals are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore take the place of application-specific documentation.

Corrosive agent	Formula	Concentra- tion in %	Acryl	PVC	PP	PVDF	1.4404	FKM	EPDM	Phar- Med®	PE	Hastel- loyC	
Acetaldehyde	CH ₃ CHO	100	-	-	0	-	+	-	+/0	-	+	+	2
Acetamide	CH ₃ CONH ₂	S	+	+	+	+	+	0	+	+/0	+	+	1
Acetic anhydride	(CH ₃ CO) ₂ O	100	-	-	0	-	+	-	+/0	+	0	+	1
Ethyl acetoacetate	C ₆ H ₁₀ O ₃	100	n	-	+	+	+	-	+/0	+/0	+	+	1
Acetone	CH ₃ COCH ₃	100	-	-	+	-	+	-	+	-	+	+	1
Acetophenone	C ₆ H ₅ COCH ₃	100	-	n	+	-	+	-	+	n	+	+	-
Acetylacetone	CH ₃ COCH ₂ COCH ₃	100	-	-	+	-	+	-	+	n	+	+	1
Acetyl chloride	CH ₃ COCI	100	-	+	n	-	0	+	-	0	n	+	1
1,2-Dichloroethene	C,H,Cl,	100	-	-	0	+	+	0	-	0	-	+	2
Acetylene tetrachloride	C,H,CI,	100	-	-	0	+	+	0	-	0	0	+	3
Acrylonitrile	CH ₂ =CH-CN	100	-	-	+	+	+	-	-	-	+	+	3
Adipic acid	HOOC(CH ₂) ₄ COOH	S	+	+	+	+	+	+	+	+/0	+	+	1
Battery acid	H ₂ SO ₄	98%	30%	50%	85%	+	20%	+	80%	30%	80%	+	1
Allyl alcohol	CH ₂ CHCH ₂ OH	96	-	0	+	+	+	-	+	0	+	+/0	2
Aluminium acetate	AI(CH ₂ COO) ₂	s	+	+	+	+	+	+	+	+	+	+/0	1
Aluminium bromide	AlBr ₂	S	+	+	+	+	n	+	+	+	+	+	2
							-11						1
Aluminium chloride	AICI ₃	S	+	+	+	+	-	+	+	+	+	+	
Aluminium fluoride	AIF ₃	10	+	+	+	+	-	+	+	+	+	+/0	1
Aluminium hydroxide	AI(OH) ₃	S	+	+	+	0	+	+	+	+	+	+	1
Aluminium nitrate	AI(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Aluminium phosphate	AIPO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Aluminium sulfate	Al ₂ (SO ₄) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Formic acid	HCOOH	S	-	+/0	+	+	+	-	-	+/0	+	+	1
Ammonia	"NH,OH"	30	+	+	+	+ (25 °C)	+	-	+	+	+	+	2
Ammonium acetate	CH ₂ COONH ₄	s	+	+/0	+	+	+	+	+	+	+	+	1
Ammonium aluminium	NH ₄ Al(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
sulfate	4	J	•	•			•	•		•			•
Ammonium carbonate	(NH ₄) ₂ CO ₂	40	+	+	+	+	+	+	+	+	+	+	1
Ammonium chloride	NH ₄ Cl	40 S	+	+	+	+	-	+	+	+	+	+/0	1
Ammonium fluoride	NH ₄ Ci NH ₄ F	S	+			+		+	+			+/0	1
				0	+		0			+	+		
Ammonium bicarbonate	NH ₄ HCO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Ammonium hydroxide	"NH ₄ OH"	30	+	+	+	+ (25 °C)	+	-	+	+	+	+	2
Ammonium nitrate	NH ₄ NO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Ammonium oxalate	(COONH ₄) ₂ * H ₂ O	S	+	+	+	+	+	+	+	+	+	+	1
Ammonium perchlorate	NH ₄ CIO ₄	10	+	+	+	+	+	+	+	+	+	+	1
Ammonium peroxodisulfate	(NH ₄) ₂ S ₂ O ₂	S	+	+	+	+	5%	+	+	+	+	5%	2
Ammonium phosphate	(NH ₄) ₂ PO ₄	S	+	+	+	+	10%	+	+	+	+	10%	1
Ammonium sulfate	(NH ₄) ₂ SO ₄	S	+	+	+	+	10%	+	+	+	+	10%	1
Ammonium sulfide	(NH ₄) ₂ S	S	+	+	+	+	n	+	+	n	+	n	2
	7.5												1
Ammonium nitrate	NH ₄ NO ₃	\$	+	+	+	+	+	+	+	+	+	+	
Amyl alcohol	C ₅ H ₁₁ OH	100	+	+	+	+	+	-	+	-	+	+	1
Aniline	C ₆ H ₅ NH ₂	100	-	-	+	+	+	-	+/0	0	+	+	2
Anilinium chloride	C ₆ H ₅ NH ₂ * HCI	S	n	+	+	+	-	+/0	+/0	0	+	+	2
Cyclohexanone	C ₆ H ₁₀ O	100	-	-	+	-	+	-	+/0	-	+	+	1
Antimony trichloride	SbCl ₃	S	+	+	+	+	-	+	+	+	+	n	2
Malic acid	C,H,O,	S	+	+	+	+	+	+	+	+	+	+	1
Arsenic acid	H_AsO,	S	+	+	+	+	+	+	+	0	+	+	3
Askarels	C ₆ H ₁₀ O	100	-	-	+	-	+	-	+/0	-	+	+	1
Ether	C ₂ H ₅ OC ₂ H ₅	100		-	0	+	+	_	-	0	0	+	1
Barium carbonate	BaCO ₂	s		+				+	+	+	+		1
	0		+		+	+	+					+	1
Barium chloride	BaCl ₂	S	+	+	+	+	-	+	+	+	+	+	1
Barium hydroxide	Ba(OH) ₂	S	+	+	+	+	+	+	+	+	+	+	
Barium nitrate	Ba(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Barium sulfate	BaSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Barium sulfide	BaS	S	+	+	+	+	+	+	+	+	+	+	1
Barium hydroxide	Ba(OH) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Benzaldehyde	C ₆ H ₅ CHO	100	-	-	+	-	+	+	+	-	0	+	1
Benzine	-	100	-	-	+	+	+	+	-	-	+	+	2
Benzoic acid	C _c H _c COOH	S	+	+	+	+	+	+	+	+/0	+	+	1
Benzyl benzoate	C.H.COOC.H.	100	-	-	+	0	+	+	-	-	+	+	2
Methyl benzoate	C _e H _e COOCH ₂	100	-	-	+	0	+	+	_	_	+	+	2
Benzene	C _E H _E	100	-	-	0	+	+	0	-	-	0	+	3
Benzenesulfonic acid	C ₆ H ₅ SO ₃ H	100	n	n	+	+	+	+	-	-	n	+	2
Benzoyl chloride	C _s H _s COCI	100	-	n	0	n	0	+	+	n	0	+	2
Benzyl alcohol	C ₆ H ₅ CH ₂ OH	100	-	-	+	+	+	+	-	+	+	+	1
Benzyl chloride	C ₆ H ₅ CH ₂ CI	90%	-	n	0	+	+	+	-	-	0	+	2
Succinic acid	C ₄ H ₆ O ₄	S	+	+	+	+	+	+	+	+	+	+	1
Epsomite	MgSO ₄	S	+	+	+	+	+	+	+	+	+	+/0	1
Hydrogen cyanide	HCN ⁴	s	+	+	+	+	+	+	+	+	+	+	3
Lead(II) acetate / lead(IV)	Pb(CH ₂ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	2
acetate	5,53555/2												
Sodium hypochlorite	NaOCl + NaCl	12%	+	+	0	+	-	+	+	+	0	> 10%	2
Lead(II) nitrate	Pb(NO ₂) ₂	50	+	+	+	+	+	+	+	+	+	+	2
Lead(II) sulfate	PbSO ₄	S	+	+	+	+	+	+	+	+	+	+	2
Tetraethyl lead	Pb(C ₂ H ₅) ₄	100	+	+	+	+	+	+	-	n	+	+	3
Sugar of lead	Pb(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	2
Potassium ferrocyanide /	K,Fe(CN)	S	+	+	+	+	+	+	+	+	+	+	1
potassium ferricyanide	4 - 1 - 76												

Corrosive agent	Formula	Concentra- tion in %	Acryl	PVC	PP	PVDF	1.4404	FKM	EPDM	Phar- Med®	PE	Hastel- loyC	WG
Borax	Na ₂ B ₄ O ₇ * _{10H2} O	S	+	+	+	+	+	+	+	+	+	+	1
Boric acid	H ₃ BO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Bromine (dry)	Br ₂	100	-	-	-	+	-	-	-	-	-	+	2
Bromobenzene	C ₆ H ₅ Br	100	n	n	0	+	+	0	-	-	0	+	2
Bromochloromethane	CH ₂ BrCl	100	-	-	-	+	+	n	+/0	-	0	+	2
Bromochlorotrifluoroethane	HCCIBrCF ₃	100	-	-	0	+	+	+	-	+	0	+	3
Potassium bromide	KBr	S	+	+	+	+	10%	+	+	+	+	0.1	1
Bromine water	Br ₂ + H ₂ O	S	-	+	-	+	-	-	-	n	-	n	2
Hydrogen bromide	HBr	50	+	+	+	+	-	-	+	-	+	0	1
Butanediol	HOC ₄ H ₈ OH	10	n	+	+	+	+	0	+	+	+	+	1
Butanol	C ₄ H ₉ OH	100	-	+	+	+	+	0	+/0	-	+	+	1
Butanone	CH ₃ COC ₂ H ₅	100	-	-	+	-	+	-	+	-	+	+	1
Butanetriol	C ₄ H ₁₀ O ₃	S	+	+	+	+	+	0	+	+	+	+	1
Butyric acid	C ₃ H ₇ COOH	100	5%	20%	+	+	+	+	+	+/0	+	+	1
Butyl acetate	CH ₃ COOC ₄ H ₀	100	-	-	0	+	+	-	+/0	+/0	-	+	1
Butyl acrylate	C,H,,O,	100	-	-	+	+	+	-	-	+/0	+	+	1
Butyl alcohol	C,H,OH	100	-	+	+	+	+	0	+/0	-	+	+	1
Butylamine	C ₄ H ₆ NH ₆	100	n	n	n	-	+	-	-	n	+	+	1
Butyl benzoate	C ₆ H ₆ COOC ₄ H ₀	100	-	-	0	n	+	+	+	-	0	+	2
Butyl mercaptan	C ₄ H ₀ SH	100	n	n	n	+	n	+	-		n	n	3
	4 0									n			
Butyl oleate	C ₂₂ H ₄₂ O ₂	100	n	n	n	+	+	+	+/0	n	n	+	1
Butyl stearate	C ₂₂ H ₄₄ O ₂	100	0	n	n	+	+	+	- ,	n	n	+	1
Butyraldehyde	C ₃ H ₇ CHO	100	-	n	+	n	+	-	+/0	-	+	+	1
Calcium acetate	(CH ₃ COO) ₂ Ca	S	+	+	+	+	+	+	+	+	+	+	1
Calcium bisulfite	Ca(HSO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Calcium carbonate	CaCO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Calcium chloride	CaCl	S	+	+	+	+	-	+	+	+	+	+	1
Calcium cyanide	Ca(CN)	S	+	+	+	+	n	+	+	+	+	n	3
Calcium bisulfite	Ca(HSO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Calcium hydroxide	Ca(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Calcium hypochlorite	Ca(OCI) ₂	S	+	+	0	+			+		+	+	2
	1 /2							0		+			
Calcium nitrate	Ca(NO ₃) ₂	S	+	50%	50%	+	+	+	+	+	+	+	1
Calcium phosphate	Ca ₃ (PO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Calcium sulfate	CaSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Calcium sulfide	CaS	S	+	+	+	+	n	+	+	+	+	+	2
Calcium sulfite	CaSO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Calcium thiosulfate	CaS,O,	S	+	+	+	+	-	+	+	+	+	+	1
Caprylic aldehyde	C ₅ H ₁₁ CHO	100	n	n	+	+	+	-	+/0	-	+	+	1
Chloracetone	CICH,COCH,	100	-	-	n	n	+	-	+	-	n	+	3
Chloral hydrate	CCI ₂ CH(OH) ₂	S	_	-	0	-	+	0	0	n	+	+	2
Chlorobenzene	C _e H _e Cl	100		-	+	+	+	+	-	-	0	+	2
Sodium hypochlorite	NaOCI + NaCI	12%	+	+	0	+	_	+	+	+	0	> 10%	2
Chloroprene	C,H,Cl	100	-	- -			+		- -	-		+	1
·	4 3				n	n . 1)	+	+		-	n		_
Chlorine dioxide solution	CIO ₂ + H ₂ O	0.5%	0	+	0	+1)	-	0	-	-	0	+	-
Ethyl chloroacetate	CICH ₂ COOC ₂ H ₅	100	-	0	+	+	+	+	-	-	+	+	2
Methyl chloroacetate	CICH ₂ COOCH ₃	100	-	0	+	+	+	0	-	-	+	+	2
2-Chloroethanol	CICH ₂ CH ₂ OH	100	-	-	+	0	+	-	0	+	+	+	3
Chloroethylbenzene	C ₆ H ₄ CIC ₂ H ₅	100	-	-	0	n	+	0	-	-	0	+	2
Chlorinated lime	Ca(OCI) ₂	S	+	+	0	+	-	0	+	+	+	+	2
Chloroformic acid ethyl ester	CICO ₂ C ₂ H ₅	100	n	n	n	n	n	+	-	n	n	n	2
Chloroform	CHCl ₃	100	-	-	0	+	+	+	-	0	-	+	2
Chloroprene	C₄H₅ČI	100	-	-	n	n	+	+	-	-	n	+	1
Chlorophenol	C _E H ₄ OHCI	100	-	n	+	+	+	n	-	-	+	+	2
Chloric acid	HCIO,	20	+	+	-	+	-	0	0	+	10%	+	2
Disulfur dichloride	S ₂ Cl ₂	100	n	n	n	+	n	+	-	-	n	n	-
Chlorosulfuric acid	SO ₂ (OH)Cl	100	-	0	-	+	-	-	-	-	-	0	1
Chlorotoluene	C ₇ H ₈ Cl	100	-	-	n	+	+	+	-	-	n	+	2
													-
Chlorine water	Cl ₂ + H ₂ O	S 200/	+	+	0	+	-	+	+	-	0	+	
Hydrochloric acid	HCI	38%	32%	+	+	+	-	+	0	0	+	0	1
Chromium(III) potassium sulfate dodecahydrate	KCr(SO ₄) ₂	\$	+	+	+	+	+	+	+	+	+	+	1
Chromic acid	H ₂ CrO ₄	50	-	+	0	+	10%	+	-	0	+	10%	3
Chromo-sulfuric acid	K ₂ CrO ₄ + H ₂ SO ₄	S	-	+	-	+	n	n	n	-	-	n	3
Chromium(III) sulfate	Cr ₂ (SO ₄) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Colamine	HÔC,H ₄ NH,	100	0	n	+	-	+	-	+/0	0	+	+	1
Crotonaldehyde	CH,C,H,CHO	100	n	-	+	+	+	-	+	-	+	+	3
Cumene	C ₆ H ₅ CH(CH ₂) ₂	100	-	-	0	+	+	+	-	-	0	+	1
Potassium cyanide	KCN	S	+	+	+	+	5%	+	+	+	+	5%	3
Prussic acid	HCN	\$	+	+	+	+	+	+	+	+	+	+	3
Cyclohexane	C ₆ H ₁₂	100	+	- ,	+	+	+	+	-	-	+	0	1
Cyclohexanol	C ₆ H ₁₁ OH	100	0	+/0	+	+	+	+	-	-	+	+	1
Cyclohexanone	C ₆ H ₁₀ O	100	-	-	+	-	+	-	+/0	-	+	+	1
Cyclohexyl alcohol	C _E H ₁₁ OH	100	0	+/0	+	+	+	+	-	-	+	+	1
Cyclohexylamine	C ₆ H ₁₁ NH ₂	100	n	n	n	n	+	-	n	n	n	+	2
JVCIOLIEXVIALLILLE	- 6: ·11: · · ·2												
· ·	CH	100	_	+/0	0	+	n	0	-	_	0	+	
Decahydronaphthalene Decalin	C ₁₀ H ₁₈ C ₁₀ H ₁₈	100	-	+/0	0	+	n n	0	-	-	0	+	2

Corrosive agent	Formula	Concentra- tion in %	Acryl	PVC	PP	PVDF	1.4404	FKM	EPDM	Phar- Med®	PE	Hastel- loyC	WGK
Dextrose	C ₆ H ₁₂ O ₆	S	+	+	+	+	+	+	+	+	+	+	1
Diacetone alcohol	C ₆ H ₁₂ O ₂	100	-	-	+	0	+	-	+	-	+	+	1
Dibromoethane	C ₂ H ₄ Br ₂	100	-	-	n	+	+	+	-	-	-	+	3
Dibutylamine	(C ₄ H ₂) ₂ NH	100	n	n	+	+	+	-	-	n	+	+	1
Dibutyl ether	C ₄ H ₀ OC ₄ H ₀	100	-	-	+	+	+	-	0	-	+	+	2
Dibutyl phthalate	C ₁₆ H ₂₂ O ₄	100	-	-	+	+	+	+	+/0	+	0	+	2
Dichlorobenzene	C ₆ H ₄ Cl ₂	100	-	-	0	+	+	+	-	-	0	+	2
Dichlorobutane	C ₄ H ₆ Cl ₂	100	-	-	0	+	+	+	-	_	0	+	3
Dichlorobutene	C ₄ H ₆ Cl ₂	100	-	-	0	+	+	0	-	-	0	+	3
Dichlorobutene	C ₄ H ₆ Cl ₂	100	_	_	0	+	+	0	-	_	0	+	3
			-	-	-			-	-	-	-		-
Dichloroacetic acid	Cl ₂ CHCOOH	100	-	+	+	+	+	-	+	0	+	+	1
Dichloroacetic acid methyl ester	Cl ₂ CHCOOCH ₃	100	-	-	+	n	+	-	n	-	+	+	2
Dichloroethane	C ₂ H ₄ Cl ₂	100	-	-	0	+	+	+	-	0	-	+	3
Dichloroethene	C ₂ H ₂ Cl ₂	100	-	-	0	+	+	0	-	0	-	+	2
Dichloroisopropyl ether	(C ₃ H ₆ Cl) ₂ O	100	-	-	0	n	+	0	0	-	0	+	2
Dichloromethane	CH ₂ Cl ₂	100	-	-	0	0	0	+	-	0	-	+	2
Dicyclohexylamine	(C,H,,),NH	100	-	-	0	n	+	-	-	-	0	+	2
Diethylene glycol	C4H10O3	S	+	+	+	+	+	+	+	+	+	+	1
Diethylene glycol monoethyl ether		100	n	n	+	+	+	n	+/0	0	+	+	1
Diethyl ether	C ₂ H ₅ OC ₂ H ₅	100	-	-	0	+	+	-	-	0	0	+	1
Diethylene glycol	C ₄ H ₁₀ O ₃	S	+	+	+	+	+	+	+	+	+	+	1
Diglycolic acid	C ₄ H ₆ O ₅	30	+	+	+	+	+	+	n	+/0	+	+	3
Dihexyl phthalate	C ₂₀ H ₂₆ O ₄	100	-	-	+	+	+	-	n	+	+	+	1
Diisobutyl ketone	C ₉ H ₁₈ O	100	-	-	+	+	+	-	+	-	+	+	1
Diisononyl phthalate	C ₂₆ H ₄₂ O ₄	100	-	-	+	+	+	n	n	+	+	+	1
Diisopropyl ketone	C ₇ H ₁₄ O "	100	-	-	+	+	+	-	+	-	+	+	1
Dimethyl carbonate	(CH ₂ O) ₂ CO	100	n	n	+	+	+	+	-	n	+	+	1
Dimethylformamide	HCON(CH ₂) ₂	100	-	-	+	-	+	-	+	+/0	+	+	1
Dimethylhydrazine	H ₂ NN(CH ₂) ₂	100	n	n	+	n	+	-	+	n	+	+	3
	2 ' 3/2												
Dimethyl ketone	CH ₃ COCH ₃	100	-	-	+	-	+	-	+	-	+	+	1
Disodium hydrogen phos-	C ₁₀ H ₁₀ O ₄ Na ₂ HPO ₄	100 s	+	+	+	+	+	+	+/0	+	+	+	1
phate	011/00000:::	100							,				4
Dioctyl phthalate	C ₄ H ₄ (COOC ₈ H ₁₇) ₂	100	-	-	+	+	+	-	+/0	+	+	+	1
Dioxane	C ₄ H ₈ O ₂	100	-	-	0	-	+	-	+/0	-	+	+	1
Disulfur dichloride	S ₂ Cl ₂	100	n	n	n	+	n	+	-	-	n	n	-
Disulfuric acid	H ₂ SO ₄ + SO ₂	S	n	-	-	-	+	+	-	+	-	+	2
DMF	HCON(CH ₂) ₂	100	-	-	+	-	+	-	+	+/0	+	+	1
DOP	C,H,(COOC,H,,),	100	-	-	+	+	+	-	+/0	+	+	+	1
Iron(II) chloride	FeCl.	S	+	+	+	+	-	+	+	+	+	+/0	1
Iron(III) chloride	FeCl ₂	S	+	+	+	+	-	+	+	+	+	+/0	1
	3												1
Iron(III) nitrate	Fe(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+	+	
Iron(III) phosphate	FePO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Iron(III) sulfate	Fe ₂ (SO ₄) ₃	S	+	+	+	+	0	+	+	+	+	+	1
Iron(II) sulfate	FeSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Ferrous sulfate	FeSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Glacial acetic acid	CH ₃ COOH	100	-	50%	+	+	+	-	0	60%	70%	+	1
Epichlorohydrin	C ₂ H _E OCI	100	-	n	+	-	+	+	0	+	+	+	3
Acetic ester	CH,COOC,H,	100	-	-	35%	+	+	-	+/0	+/0	+	+	1
Acetic acid	CH ₂ COOH	100	-	50%	+	+	+	-	0	60%	70%	+	1
Acetic acid anhydride	(CH,CO),O	100	_	-	0	-	+	-	+/0	+	0	+	1
Butyl acetate	CH ₂ COOC ₂ H ₃	100	-	-	0	+	+	-	+/0	+/0	-	+	1
Acetyl chloride	CH ₂ COOC ₄ H ₉	100	-			-			+/0	0			1
•				+	n o=o/		0	+			n	+	
Ethyl acetate	CH ₃ COOC ₂ H ₅	100	-	-	35%	+	+	-	+/0	+/0	+	+	1
Propyl acetate	CH ₃ COOC ₃ H ₇	100	-	-	+	+	+	-	+/0	-	+	+	1
Ethanol	C ₂ H ₅ OH	100	-	+	+	+	+	-	+	+	+	+	1
Ethanolamine	HOC ₂ H ₄ NH ₂	100	0	n	+	-	+	-	+/0	0	+	+	1
Ethyl acrylate	C,H,COOC,H,	100	-	-	+	0	+	-	+/0	-	+	+	2
Ethylacrylic acid	C ₄ H ₂ COOH	100	n	n	+	+	+	n	+/0	n	+	+	1
Ethyl alcohol	C ₂ H _E OH	100	-	+	+	+	+	-	+	+	+	+	1
Ethyl benzoate	C ₂ H ₅ OH	100	n	-	+	0	+	+	-	-	+	+	1
•	0 0 2 0	100	-										1
Ethylbenzene	C ₆ H ₅ -C ₂ H ₅			-	0	+	+	0	-	-	0	+	
Ethyl bromide	C ₂ H ₅ Br	100	-	n	+	+	n	+	-	0	+	+	2
Ethylcyclopentane	C ₅ H ₄ C ₂ H ₅	100	+	+	+	+	+	+	-	-	+	+	1
Ethylene dichloride	C ₂ H ₄ Cl ₂	100	-	-	0	+	+	+	-	0	-	+	3
Ethylenediamine	(CH ₂ NH ₂) ₂	100	0	0	+	-	0	-	+	n	+	0	2
Ethylene dibromide	C ₂ H ₄ Br ₂	100	-	-	n	+	+	+	-	-	-	+	3
Ethylene dichloride	C ₂ H ₄ Cl ₂	100	-	-	0	+	+	+	-	0	-	+	3
Ethylene glycol	C ₂ H ₄ (OH) ₂	100	+	+	+	+	+	+	+	+	+	+	1
Ethylene glycol ethyl ether	HOC, H, OC, H,	100	n	n	+	+	+	n	+/0	0	+	+	1
La sylono gryoor da lyi da idi	C _g H ₁₆ O												
	U.HU	100	n	+/0	+	+	+	+	+	-	+	+	2
2-Ethylhexanol		10-											1
2-Ethylhexanol Fatty acids	R-COOH	100	+	+	+	+	+	+	0	0	+	+	
2-Ethylhexanol Fatty acids Sodium thiosulfate	R-COOH Na ₂ S ₂ O ₃	S	+	+	+	+	+ 25%	+	0 +	0 +	+	25%	1
2-Ethylhexanol Fatty acids Sodium thiosulfate	R-COOH Na ₂ S ₂ O ₃ C ₆ H ₅ F												
2-Ethylhexanol Fatty acids	R-COOH Na ₂ S ₂ O ₃	S	+	+	+	+	25%	+	+	+	+	25%	1

Hydrotuco acid	Corrosive agent	Formula	Concentra- tion in %	Acryl	PVC	PP	PVDF	1.4404	FKM	EPDM	Phar- Med®	PE	Hastel- loyC	WGK
Formation CH_O	Hydrofluoric acid	HF	80%	-	40%*	40%**	+	-	+	0	-	40%		1
Formarish	Hydrofluoric acid	HF	80%	-	40%*	40%**	+	-	+	0	-	40%	+/0	1
Formarche: 1,000 100 1	Formaldehyde	CH ₂ O	40	+	+	+	+	+	-	+/0	-	+	+	2
From C. C. C. C. C. C. C. C. C. C. C. C. C.	Formalin	CH ₂ O	40	+	+	+	+	+	-	+/0	-	+	+	2
Final Company Company	Formamide	HCONH ₂	100	+	-	+	+	+	+	+	n	+	+	1
Fulfred	Furan	C ₄ H ₄ O	100	-	-	+	-	+	-	n	-	+	+	
Finding singhols Optification	Furanaldehyde	C ₅ H ₅ O ₂	100	n	n	n	0	+	-	+/0	-	n	n	
Gallie and G. Q. (Q.H.) (COCH	Furfural	C ₅ H ₅ O ₂	100	n	n	n	0	+	-	+/0	-	n	n	2
Galcum Injuracide	Furfuryl alcohol			-	-	+	0	+	n		-	+	+	
Tarrinn	Gallic acid		5%	+	+	+	+	+	+	+/0	+	+	+	1
Plaste	Calcium hydroxide			+	+	+	+	+	+	+	+	+	+	1
Gouden Na, SQ S	Tannin	C ₇₆ H ₅₂ O ₄₆	50	+	+	+	+	+	+	+	+	+	+	1
Globote C,H,C,C S	Plaster	CaSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Glycord C, H, CH 100	Glauber's salt	Na ₂ SO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Secretarion CH_COL_COL_COL_COL_COL_COL_COL_COL_COL_COL	Glucose	C ₆ H ₁₂ O ₆	S	+	+	+	+	+	+	+	+	+	+	1
Ministry Ministry	Glycerol	C ₃ H ₅ (OH) ₃	100	+	+	+	+	+	+	+	+	+	+	1
September Ni-CH-1000H 10	Glycerol chlorohydrin	C₃H₅OCI	100	-	n	+	-	+	+	0	+	+	+	3
Olycone N-I,CH-COOH 10	Triacetin	C ₃ H ₅ (CH ₃ COO) ₃	100	n	n	+	+	+	-	+	n	+	+	1
Glocal calculation	Glycine	NH,CH,COOH	10	+	+	+	+	+	+	+	+	+	+	1
Glycotic acid	Glycine	NH,CH,COOH	10	+	+	+	+	+	+	+	+	+	+	1
Selected C C C C C C C C C	Glycol	C ₂ H ₄ (OH) ₂	100	+	+	+	+	+	+	+	+	+	+	1
Une ONH, 5 + 4 + 4 + 4 + 20% + 4 + 1 Hospathoroplatinic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatinic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatinic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 1 Hospathoroplatic acid H,PCI, S N 1 Hospathoroplatic C,H,QH 100 N N 4 + 4 + 4 Hospathoroplatic C,H,QH 100 N N 4 + 4 Hospathoroplatic C,H,QH 100 N N 4 + 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH N N Hospathoroplatic C,H,QH	Glycolic acid	CH,OHCOOH	70%	+	37%	+	+	+	+	+	+/0	+	+	1
Une ONH, 5 + 4 + 4 + 4 + 20% + 4 + 1 Hospathoroplatinic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatinic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatinic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 4 + 4 + 4 + 4 Hospathoroplatic acid H,PCI, S N 1 Hospathoroplatic acid H,PCI, S N 1 Hospathoroplatic C,H,QH 100 N N 4 + 4 + 4 Hospathoroplatic C,H,QH 100 N N 4 + 4 Hospathoroplatic C,H,QH 100 N N 4 + 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH 100 N N 4 Hospathoroplatic C,H,QH N N Hospathoroplatic C,H,QH	Green vitriol													1
Hepane	Urea			+	+/0	+	+	+				+	+	1
Hoseathoropitatic acid H,PCL S N + + + + + + + + N + N + N N	Heptane													
Hexantenosicio acid H.S.F. 100	•			n			+	-		+	n			-
Hexare								0					+/0	2
Hexanal C,H,CHO 100 n n + + + + - - - - - + + 1														
Hexanel C,H,OH 100 -										+/0	-			
Hexame		0 11												
Hexen		0 10												
1-Hosanol (NH,)CO, 40 + + + + + + + + + + + + + + + + + 1 Silver intrate AgNO, 5 + + + + + + + + + + + + + + + + + +														
Ammonium carbonate (NH), CO, 40 + + + + + + + + + + + + + + + + 1 1		С ₆ П ₁₂		11	+									
Silver intrate				-	-						-			
Hydraguring Hydrager Hydraguring CH Hydro														
Hydroxylamonium sulfate C,H,OH, *H,SO, * 10		9 3												
Hydroxylammonium sulfate (NH,OH), "H,SO, 10	· ·	2 4 2								+				
Popoprionous acid										-				
Lockine														
Indication Ki	• •							-						
Hydroidic acid														
Sebuty S				•										
Soproppal octoate CH-J)CHOH 100 -				+										
Isopropyl acetate CH_COCCH(CH_J)_2 100 -	•	2 3 ' ' 3		-				+	+					
Sepropy alcohol Chi_jCHOH 100 - +/o + + + + + + + + + 0 + + + 1 Sepropy benzene C_jH_iCH(CH)_2 100 0 + + + + + + - 0 + + 1 Sepropy benzene C_jH_iCH(CH)_2 80% 0 + + + + - 0 0 0 + 0 Sepropy benzene C_jH_iCHOH 80% 0 + + + + - 0 0 0 + 0 Sepropy benzene C_jH_iCHOH 80% 0 + + + + + + + + + + + + + + + Sepropy benzene C_jH_iCHOH 80% 0 + + + + + + + + + + + + + + + + + +		. 32		-	+/0		+		+					
Isopropylbenzene		3 ' 3'2		-		+	+	+	-	+/0		+	+	
Sopropyl chloride	Isopropyl alcohol	(CH ₃) ₂ CHOH	100	-	+/0	+	+	+	+	+	0	+	+	1
Sopropylether C ₂ Fi ₃ (O 100 - - 0 + + - - 0 0 + 1 Potassium alum KA (SO) ₂ s + + + + + + + + +	Isopropylbenzene			-	-	0	+	+	+	-	-	0	+	
Potassium alum KAI(SQ) ₂ SS + + + + + + + + + + + + + + + + + +	Isopropyl chloride		80%	-	-	0	+	+	+	-	0	0	+/0	2
Caustic potash KOH 50 + + + + + (25 °C) + - + 10% + + 1 Saltpetre KNO ₃ s + + + + + + + + + + + + + + + 1 Potassium acetate CH ₂ COOK s + + + + + + + + + + + + + + + + 1 Potassium acetate CH ₂ COOK s + + + + + + + + + + + + + + + + + 1 Potassium aluminium sulfate KA(SO ₂) s + + + + + + + + + + + + + + + + + +	Isopropylether	C ₆ H ₁₄ O	100	-	-	0	+	+	-	-	0	0	+	1
Saltpetre KNO ₃ s + + + + + + + + + + + + + + + + + 1 Potassium acetate CH ₂ COOK s + + + + + + + + + + + + + + + + + +	Potassium alum	KAI(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Potassium acetate	Caustic potash	KOH	50	+	+	+	+ (25 °C)	+	-	+	10%	+	+	1
Potassium aluminium sulfate KAI(SQ))2	Saltpetre		S	+	+	+	+	+	+	+	+	+	+	1
Potassium bicarbonate KHCO ₃	Potassium acetate	CH ₃ COOK	S	+	+	+	+	+	+	+	+	+	+	1
Potassium dichromate	Potassium aluminium sulfate	KAI(SO ₄) ₂		+	+	+	+	+	+	+	+	+	+	1
Potassium bisulfate KHSO ₄ 5% + + + + + + + + + + + + + + + + + 1 Potassium bitartrate KC ₄ H,O ₆ s + + + + + + + + + + + + + + + + + +	Potassium bicarbonate	KHCO ₃	40	+	+	+	+	+	+	+	+	+	+/0	1
Potassium bisulfate KHSO ₄ 5% + </td <td>Potassium dichromate</td> <td>9</td> <td>S</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>10%</td> <td>3</td>	Potassium dichromate	9	S	+	+	+	+					+	10%	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Potassium bisulfate	2 2 1												
Potassium metaborate KBO₂ or S S +	Potassium bitartrate	*												
Potassium bromate KBrO ₃ s +	Potassium metaborate													
Potassium bromide		2												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
sulfate dodecahydrate Potassium cyanate KOCN s +														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NOI(3U ₄) ₂	8	+	+	+	+	+	+	+	+	+	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		KOCN	6				1		1					2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
rate(III) Potassium hydrogen fluoride \mbox{KHF}_2 s n + + + + + + + + + + 1 Potassium hydroxide KOH 50 + + + + + + (25 °C) + - + 10% + + 1 Potassium iodide KI s + + + + + + + + + + + + 1	•	4												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		K ₃ Fe(CIN) ₆	S	+	+	+	+	+	+	+	+	+	+	1
Potassium hydroxide KOH 50 + + + + + $(25 ^{\circ}\text{C})$ + - + 10% + + 1 Potassium iodide KI s + + + + + + + + + + 1		KILE		_										4
Potassium iodide KI s + + + + + + + + + 1		4												
Potassium nitrate KNO ₃ s + + + + + + + + + + 1														
	Potassium nitrate	KNU ₃	S	+	+	+	+	+	+	+	+	+	+	1

Possessim personne Month 1	Corrosive agent	Formula	Concentra- tion in %	Acryl	PVC	PP	PVDF	1.4404	FKM	EPDM	Phar- Med®	PE	Hastel- loyC	WGK
Perseaum promitter (\$50, 5 1 1 1 1 1 1 1 1 1		4	S	+	+	+	+	n	+	+		+	+	
Pubbosen promobiles KS, D, S				+	+	+	+	+	+	+	6%	+	+	
Technological montage	•		S	+	+	+	+	+	+	+	+	+	+	
Polisson sulface Color C	·		S	+	+	+	+	+	+	+	+	+	+	1
Politica month Politica Pol														1
Limenside CoCCC CoCCC CoCCC COCC COCCC COCCC COCCC COCCC COCCC COCCC COCCC COCCC COCCC		2 4												
Limentain Coping S		2 0	-											
Cachum Interiate														
Garbolae acid Q.H.O.F 100 - + + + + + + + + +		, ,2	-											•
Silice and Sign S		. 3/2			30%									
Coast minimize fase and NaCl S		0 0			-									
Sedum chronized (abble sall) NaCol														
Carbon cand								_						
Carbon desinder CS, 10D 0 + + + + 0 + 2 Aqua regia SIACI + NAO, 10D - + - 0 + 2 - 3 - 0 - 0 + 2 Aqua regia CHORD (SHC) + NAO, 10D - + - 2 - 3 - 0 - 0 - 0 - 2 Consorti Control Cont														
Center Internet		2 3												
Agas regign 3 HCl + HNO, 100 - 4 - 4 - 4 - 5 - 0 1 - 2 Censed CHEAGE														
Cisear		4		-	+	-				0		-		
Copper linearise				0		+		+	+		-	+	+	
Copper (C										+	+			
Copperiil carborate CuCQ, S														
Copperfig Name CuC S		J. J.2												
Capper Expande														
Cooper Manuface CuF S														
Copporting Inflate CufNO ₁ S + <td> , ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	, ,													
Coppentification CuSO, S			-											
Virol of copper CuSQ	,													
Levosin		4	S	+	+	+	+		+	+		+	+	2
Linhium chloride LICI S + + + + + - + + + + + + + + + + 1 Magnesium chloride MgCQ, S + + + + + + + + + + + + + + + + + +	Levoxin	N,H, * H,O	S	+	+	+	+	+	n	+	0	+	+	3
Magnesium carbonate Magnesium carbonate Magnesium carbonate Magnesium carbonate Magnesium sindrate	Lithium bromide	LiBr	S	+	+	+	+	+	+	+	+	+	+	1
Magnesium chloride	Lithium chloride	LiCl	S	+	+	+	+	-	+	+	+	+	n	1
Magnesium hydroxide Mg(OH), S + + + + + + + + + + + + + + + + + +	Magnesium carbonate	MgCO ₃	S	+	+	+	+	+	+	+	+	+	+/0	1
Magnesium intrate MgNO_1 S	Magnesium chloride	MgCl ₂	S	+	+	+	+	0	+	+	+	+	+	1
Magnesium sulfate	Magnesium hydroxide	Mg(OH) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Males acid C F , C S	Magnesium nitrate	Mg(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Manganesell) chloride MinSQ S + + + + + + + + + + + +	Magnesium sulfate	MgSO ₄	S	+	+	+	+	+	+	+	+	+	+/0	1
Manganese(I) sulfate	Maleic acid	$C_4H_4O_4$	S	+	+	+	+	+	+	+	0	+	+	1
MERK CH,COCH ₂ 100			S	+	+	+	+	-	+	+	+	+	+	1
Meshy Mesh	• ,,	,	S	+	+	+	+	+	+	+	+	+	+	1
Methanol CH_OCH_1 100				-	-	+	-	+	-	+	-	+	+	
Methano	•			-	-	n	n	+	-			n	+	
Methoxybutanol	,	3 3					+							
Methyl acetate		0												
Methyl acetoacetate C ₀ H ₀ O ₀ 100 - + + + + + + 2 Methyl acrylate C,H ₀ OOCH ₃ 100 - - + + + - + 0 + + 0 + + 0 + + 0 + + 0 +	•	3 1 2/4		-	-				+					
Methyl acnylate C,H,COOCH ₃ 100 - - + + + - +/o 0 + + 2 Methyl alcohol CH,OH 100 - - + <td< td=""><td>,</td><td>0 0</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>	,	0 0		-	-				-					
Methyl alcohol	,	3 0 3			-									
Methylamine CH ₃ NH ₂ 32% + 0 + - + + + - + + + - +		2 0 0			-									
4-Methylcatechol C ₀ H ₀ (OH) ₀ CH ₀ S +	,								0					
Methyl cellulose									-					
Methyl chloroform CCl ₃ CH ₃ 100 - - 0 + + + - 0 0 + 3 Methylycyclopentane C,H,CH ₃ 100 +		C ₆ H ₃ (OH) ₂ CH ₃												
Methylcyclopentane C _a H _a CH ₃ 100 + <	•	001011												
Methylene chloride CH ₂ Cl ₂ 100 - - 0 0 + - 0 - + 2 Methyl ethyl ketone CH ₂ CO ₂ H ₂ 100 - - + + - + <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•													
Methyl ethyl ketone CH_QCOC_Hg 100 - - + - - + <th< td=""><td></td><td>3 9 3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		3 9 3												
Methylglycol C ₃ H ₆ O ₂ 100 + <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	,													
Methyl isobutyl ketone CH ₃ COC ₄ H ₉ 100 - + - + - 0 - + + 1 Methyl isopropyl ketone CH ₃ COCOH ₂ 100 - - + + - +/0 - + + 1 Methyl methacrylate C ₃ H ₅ COCOH ₃ 100 - +		3 2 3												
Methyl isopropyl ketone CH3COC3H7 100 - - + - + - +/o - + + 1 Methyl methacrylate C3H3COOCH3 100 n n n + </td <td>, , ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	, , ,													
Methyl methacrylate C ₃ H ₂ COOCH ₃ 100 - - + + + - - + + 1 Methyl oleate C ₁₇ H ₃ COOCH ₃ 100 n n n +														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Methyl salicylate HOO_H_4COOCH ₃ 100 - - + + + n +/o - + + 1 MIBK CH ₃ COC ₄ H ₉ 100 - - + + - 0 - + + 1 Morpholine C ₃ H ₉ O ₃ 100 - + + + + n n - + + 1 100 + + + + n n - +														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3 4 9												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- 1 ₉ OIN												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NaCH COO												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9												
Sodium chlorate NaClO ₃ s + + + + + + + + + + 2														
J		2 3												
OURDITION NAME	Sodium chloride	NaCl	S	+	+	+	+	-	+	+	+	+	+	1

Sactorn protections NaCOC 248 1 1 2 1 10% 2 1 1 1 1 1 10% 2 1 1 1 1 1 1 1 1 1	Secure member NegOr Secu	Corrosive agent	Formula	Concentra- tion in %	Acryl	PVC	PP	PVDF	1.4404	FKM	EPDM	Phar- Med®	PE	Hastel- loyC	
Section Sect	Section Sect	Sodium chlorite	NaClO ₂	24%	+	+	+	+	10%	+	+	+	+	10%	
Solution protections of the content	Sold membelshall be May SQL s	Sodium chromate	Na ₂ CrO ₄	S	+	+	+	+	+	+	+	+	+	+	
Column displayer Column series Column se	Column sharphore Column shar	Sodium cyanide	NaCN	S	+	+	+	+	+	+	+	+	+	+	3
iscium fluorines in Naif-Si, s	Scale multicaries Namicarie	Sodium metabisulfite	Na ₂ S ₂ O ₅	S	+	+	+	+	+	n	n	+	+	+	1
Scalar Information MaCP 10	Sadem Information Machine Machine 1969	Sodium dithionite	Na ₂ S ₂ O ₄	S	+	10%*	10%	+	+	n	n	+	10%	+/0	1
isclam infragone subtem MaSCs S	isclam infragone sulfate NaCO + NaCO		2 2 4												
Section Proposed	Sedem Infragranded NaPO NaPO NaPO NaPO NaPO NaPO NaPO NaPO														
Section Mayorhiorite NaCol	Section Margonication Section Section Section (Section Sec		4							т					
Sextamonidade Nal s	Sextam mortade Nal	,						°C)		-					
Socker melaghtepstellar NaNO ₂	Socker ministry in MaNO, 1 1	* '							-			+	0		
Second management Nest	Second management NaNO,	Sodium iodide	Nal	S	+	+	+	+	+	+	+	+	+	+	1
Sedem Intritition Na, No, O	Sedeminative Na, No, S	Sodium metaphosphate	(NaPO ₃)	S	+	+	+	+	+	+	+	+	+	+	1
isolatum protentiale Na,BO, 140, s + +/- + + + + + + + + + + + + + + 10 1 1 1 1 1 1 1 1 1	isolatum consistente Na,BO, 14,C), S	Sodium nitrate	NaNO ₃	S	+	+	+	+	+	+	+	+	+	+	1
column procession Na,BG, OH, O. s +	column procession NaBQ-10,	Sodium nitrite	3	S	+	+			+				+		2
Scalar proportion	Seatum personate NeBQ-14-Q, s														
Soldum personole NSCO, S + + + + + + + + + + + + + + + + + 1	Soldum personole NSQO, s + + + + + + + + + + + + + + + + + +		2 2 4												
Sadum promotede Na SQ, s n	Sadum promoted Na, SQ, s n	·	2 2 2												
Sideum procode Sideum Side	Sideum procode and the New York Sideum selection of the Sideum selection of CH_SIGHOOMS is 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	Sodium perchlorate	**	S	+	+	+	+	10%	+	+	+	+	10%	
Sodium salaylate	Sodium salayolate C, H, OH COONA S	Sodium peroxide	Na ₂ O ₂	S	+	+	+	+	+	+	+	n	-	+	1
Subdum sialokale C,H,O-HOCONN S + + +0 + + + + + + + + + + + + + 1 Soldum sulpidate NA, SSO, S + + + + + + + + + + + + + + + + + +	Subdum silantial college Subdum Subdum Subdu	Sodium peroxodisulfate	Na,S,O,	S	n	+	+	+	+	+	+	+	+	+	1
Side	Side	•	2 2 0												
Sedum uniafiel	Scidum sulafate		0 4												
Sociarum sulfidire Na,SC, s + + + + + + + + + + + + + + + + + +	Sociarum suffirire Na,SC, s		2 3												
Sodum sulfitle Nal, SQ, 10, 0 SS + + + + + + + + + + + + + + + + + +	Sodum sulfitle Nal, SQ, 100, S Nal, SQ, SQ, 100, S Nal, SQ, SQ, S Nal, SQ, S Nal, SQ, SQ, S Nal, SQ, SQ, S Nal, SQ, SQ, S Nal, SQ, SQ, S Nal, SQ, SQ, S Nal, SQ, SQ, S Nal, SQ, S Nal, SQ, SQ, S Nal, SQ, S Nal, SQ, SQ, S Nal, SQ, S Nal, SQ, S, S Nal, SQ, S, S Nal, SQ, S											+			
Sodum untertee Na BQ C, 10, 0 s + + + + + + + + + + + + + + + + + +	Sodum unifore Na,B,SC ₂ , row s	Sodium sulfide	Na ₂ S	S	+	+	+	+	+	+	+	+	+	+	2
Sodum trabonate Na, B, O, s	Sodum trabonate Na, B, O, s s + + + + + + + + + + + + + + + + +	Sodium sulfite	-	S	+	+	+	+	50%	+	+	+	+	50%	1
Sodum Indicultate Na, S, O, S	Sodum Indicultate Na, S, O, S														
Sodium Introhyphophapean NAIPOL S	Sodium Introhyphophapean NAI-P.O.														
Name	Name														
Common Mydroxide solution NaOH So	Commit South NaOH														
This saftpoter NaNO, S + + + + + + + + + + + + + + + + + +	This salipator NaNO, s + + + + + + + + + + + + + + + + 2 No. No. NaNO, s + + + + + + + + + + + + + + + + + +	Natron	NaHCO ₃	S	+	+	+	+	+	+	+	+	+	+	1
This satisfiester NaNCy S + + + + + + + + + + + + + + + + + +	This satisfied NaNC	Sodium hydroxide solution	NaOH	50	+	+	+		+	-	+	30%	+	+	1
Sickeling District CH_COO_N S	Sickeling Deficiency CH_COO_N S	Chile saltpeter	NaNO	S	+	+	+	,	+	+	+	+	+	+	1
Nickell Individed NiCl S	Nickell Indirate														
Nickelly surface NINOQ, S + + + + + + + + + + + + + + + + + +	Nickelly surface NINOQ, S + + + + + + + + + + + + + + + + + +		1 3 /2												
Nickell Nicko Ni	Nickell Nicko Ni	. ,		S	+	+	+	+	-	+	+	+	+		
Nitromethane	Nitromethane	Nickel(II) nitrate	Ni(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+/0	2
Nitromethane	Nitromethane	Nickel(II) sulfate	NiSO,	S	+	+	+	+	+	+	+	+	+	+/0	2
Nitropropane (CH,),CHNO, 100 + + n + - + 76 - + + + + 2 Detaine C,H,NO,CH, 100 + + + + + + + + + 2 Detaine C,H,NO,CH, 100 + + + + + + + + + + + + 1 Detained C,H,OH 100 + + + + + + + + + - + + + + + 1 Detained C,H,OH 100 + + + + + + + + + + - + + + + +	Nitropropane (CH,),CHNO, 100 + n + - + 0 - + 0 - + + + 2 Detarne C,H, n,CH, 100 + + + + + 0 + + + + 2 Detarne C,H, n,CH, 100 + + + + + + + + + + + 1 Detarnel C,H, n,CH 100 + + + + + + + + + + + + 1 Detarnel C,H, n,CH 100 + + + + + + + + + + + + + 1 Detarnel C,H, n,CH 100 + + + + + + + + + + + + + +	. ,													
Nitrofologe	Nitrofologe														
Dotation C,H, 100 0 +	Dotation C, H, 0 H 100 0 + + + + + + + + + + 1 1 1 1 1 1 1														
Detailed C,H,,OH 100 -	Detailed C,H,,OH 100 -		0 4 2 3		-	-	+	+	+	0	-	-	+	+	
I-Octalons	I-Octalons	Octane	C ₈ H ₁₈	100	0	+	+	+	+	+	-	-	+	+	1
Dictylcresol	Dictylcresol	Octanol	C ₀ H ₁₇ OH	100	-	-	+	+	+	+	+	-	+	+	1
Detyloresol	Detyleresol	1-Octanol	C.HOH	100	-	-	+	+	+	+	+	-	+	+	1
Dile	Difference of the property of		0 11		_	_									1
Deum	Deum	•	0151 1240		_	. /-									
Description Description	Description Description		-												
Dealic acid COOH]	Dealic acid COOH]	Dleum	$H_2SO_4 + SO_3$		n	-	-	-	+	+	-	+	-	+	2
Pentane C, H, S 100 + + + + + + + + + + + + + + + 1 1 1 1	Pentane	Orthophosphoric acid	H ₃ PO ₄	85%	50%	+	+	+	+	+	+	+	+	+	1
Pentane C, H, S 100 + + + + + + + + + + + + + + + 1 1 1 1	Pentane	Oxalic acid	(COOH)	S	+	+	+	+	10%	+	+	+/0	+	+/0	1
Fentanol	Fentanol	Pentane		100	+	+	+	+	+	+	-	-	+	+	1
PERR C_iC_i _ 100 0 + + 0 - 0 0 + 3	EER														
Fetrachloroethylene	Fetrachloroethylene		0 11		Т.	т.									
Perchloric acid HClO ₄ Perchloric acid HClO ₄ Perchloric acid HClO ₄ Perchloric acid HClO ₄ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric H ₃ O ₅ Perchloric H ₄ O ₇ Perchloric HClO ₅ Perch	Perchloric acid HClO ₄ Porty More HClO ₅ Perchloric acid HClO ₆ Perchloric acid HClO ₆ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric H ₂ O ₅ Perchloric HClO ₆ Perchloric HClO ₇ Perchloric				-	-									
Perhydrol H, O_2 90% 40% 40% 30% + + 30% 30% + + + 1 Petroleum ether O, H ₃₀₋₂ 100 + + +/0 + + + + + + + + + 1 Phenol C, H, OH 100 + + + + + + + + + + + + 1 Phenol C, H, OH 100 + + + + + + + + + + + 2 Phenylethyl ether C, H, OC, H ₅ 100 + + n n + + + + + + 2 Phenylethyl ether C, H, NHNHn ₅ 100 0 + + + 0 0 + + 2 Phenylethyl ether C, H, OC, H ₅ 100 + + + + + + + + + + + + + + + +	Perhydrol H,O 90% 40% 40% 30% + + 30% 30% + + + 1 Petroleum ether O,H _{3h12} 100 + + +/o + + + + + + + + + 1 Petroleum ether O,H _{3h12} 100 + + + + + + + + + + + 1 Phenol C,H,OH 100 + + + + + + + + + + + 2 Phenylethyl ether O,H _{3h12} 100 + + n + + + + + + + 2 Phenylethyl ether O,H _{3h12} 100 0 + + + 0 0 + 2 Phenylethyl ether O,H _{3h12} 100 0 + + + + + + + + + + + + + + +	Tetrachloroethylene	C ₂ Cl ₄		-	-	0	+	+	0	-	0	0	+	3
Perhydrol H, O_2 90% 40% 40% 30% + + 30% 30% + + + 1 Petroleum ether O, H ₃₀₋₂ 100 + + +/0 + + + + + + + + + 1 Phenol C, H, OH 100 + + + + + + + + + + + 1 Phenol C, H, OH 100 + + + + + + + + + + + 2 Phenylethyl ether C, H, OC, H ₅ 100 + + n n + + + + + + 2 Phenylethyl ether C, H, NHNHr ₅ 100 0 + + + 0 0 + + 2 Phenylethyl ether C, H, OC, H ₅ 100 + + + + + + + + + + + + + + + +	Perhydrol H,O 90% 40% 40% 30% + + 30% 30% + + + 1 Petroleum ether O,H _{3h12} 100 + + +/o + + + + + + + + + 1 Petroleum ether O,H _{3h12} 100 + + + + + + + + + + + 1 Phenol C,H,OH 100 + + + + + + + + + + + 2 Phenylethyl ether O,H _{3h12} 100 + + n + + + + + + + 2 Phenylethyl ether O,H _{3h12} 100 0 + + + 0 0 + 2 Phenylethyl ether O,H _{3h12} 100 0 + + + + + + + + + + + + + + +	Perchloric acid	HCIO ₄	70%	n	10%*	10%	+	-	+	+/0	+	+	n	1
Petroleum ether	Petroleum ether		- "						+						
Phenol C,H,OH 100 + + + + + - + + + + + + 2 Phenylthyl ether C,H,OC,H,S 100 + + n + + + + + + + + + + + + 2 Phenylthyl drazine C,H,NHNH, 100 0 + + n + 0 0 + + 1 1 Phosphoric acid H,PO, 85% 50% + + + + + + + + + + + + + + + + + + 1 1 Phosphoric acid H,PO, 100 + + + + + + + + + + + + + + + + +	Phenol C,H,OH 100 + + + + + - + + + + + + + 2 Phenylthyl ether C,H,OH,Shiftyl 100 + + n + + + + + + + 2 Phenylthyl drazine C,H,NHNH, 100 0 + + + 0 0 + + + 1 Phosphoric acid H,PQ, 85% 50% + + + + + + + + + + + + + + + + + + +	•	C. H												
Phenylethyl ether	Phenylethyl ether $C_0^2H_0^2OC_2H_3$ 100 + + n + + + + 2 Phenylhydrazine $C_0^2H_0^2OC_2H_3$ 100 0 + + 0 0 0 0 + 2 Phenylhydrazine $C_0^2H_0^2OC_2H_3$ 100 - 0 + + + 0 0 + + + + + + + 1 Phosphoric acid $C_0^2H_0^2OC_2H_3$ 100 - 0 + + + 0 0 + + + 0 + + 0 + + 1 Phosphoryl chloride $C_0^2H_0^2OC_2H_3$ 100 - 0 + + + 0 0 + + + 0 + + 0 + + 1 1 Phosphoryl chloride $C_0^2H_0^2OC_2H_3$ 100 - 0 + + + + + + + + + + + + + + + + +		O _n 1 1 _{2n+2}												
Phenylhydrazine	Phenylhydrazine		0 3												
Phosphoric acid H ₃ PO ₄ 85% 50% + + + + + + + + + + + + + + + + 1 Phosphorus trichloride PCl ₃ 100 + + + + + + + + + + 0 + + 0 + + 0 + + 1 Phosphoryl chloride PCl ₃ 100 + + + + + + + + + + + 1 Phosphoryl chloride PCl ₃ 100 + + + + + + + + + + + + + + + + 1 Phosphoryl chloride PCl ₃ 100 + + + + + + + + + + + + + + + + +	Phosphoric acid H ₃ PO ₄ 85% 50% + + + + + + + + + + + + + + + + 1 Phosphorus trichloride PCl ₃ 100 + + + + + + + + 0 + + + 0 + + + 1 Phosphoryl chloride PCl ₃ 100 + + + + + + + + + + + 1 Phosphoryl chloride PCl ₃ 100 + + + + + + + + + + + + + + + +														
Phosphorus trichloride PCl ₃ 100 + + + + + 0 + +/0 + +/0 + + 1 Phosphoryl chloride PCCl ₃ 100 + + + + + + + + + + + + + 1 Phosphoryl chloride PCCl ₃ 100 + + + + + + + + + + + + + + + + 1 Phosphoryl chloride PCCl ₄ (NO ₃) ₂ OH s + + + + + + + + + + + + + + + + + +	Phosphorus trichloride PCI ₃ 100 + + + + + 0 + +/0 + +/0 + + 1 Phosphoryl chloride PCOI ₃ 100 + + + + + + + + + + + + + + 1 Phosphoryl chloride PCOI ₃ 100 + + + + + + + + + + + + + + + + +	Phenylhydrazine	C ₆ H ₅ NHNH ₂	100	-	-	0	+	+	0	-	-	0	+	2
Phosphorus trichloride PCl ₃ 100 + + + + + 0 + +/0 + +/0 + + 1 Phosphoryl chloride PCCl ₃ 100 + + + + + + + + + + + + + 1 Phosphoryl chloride PCCl ₃ 100 + + + + + + + + + + + + + + + + 1 Phosphoryl chloride PCCl ₄ (NO ₃) ₂ OH s + + + + + + + + + + + + + + + + + +	Phosphorus trichloride PCI ₃ 100 + + + + + 0 + +/0 + +/0 + + 1 Phosphoryl chloride PCOI ₃ 100 + + + + + + + + + + + + + + 1 Phosphoryl chloride PCOI ₃ 100 + + + + + + + + + + + + + + + + +				50%	+	+			+	+	+	+	+	1
Phosphoryl chloride POCl ₃ 100 + + + n + + + n + + + 1 Phithalic acid C ₆ H ₄ (COOH) ₂ s + + + + + + + + + + + + + + + + + +	Phosphoryl chloride POCl ₃ 100 + + + n n + + + n n + + + 1 Phthalic acid C ₆ H ₄ (COOH) ₂ s + + + + + + + + + + + + + + + + + +														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3												
Prioric acid $C_6^1H_3^1NO_3^1O^0H$ s $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Prioric acid $C_0^1H_0^1NO_3^1O^0H$ s $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	' '													
Piperidine $C_{5}^{0}H_{11}^{1}N$ 100 n n n + n + 2 2 Potassium carbonate $K_{5}^{0}CO_{3}$ s + + + + + + + + + + + + + + 55% + + + 1 1 2 Propolitritle $C_{1}^{0}CH_{5}^{0}CN_{5}^{0}$ 100 n n n + + + + + + + + + + + + + + + +	Piperidine $C_{5}^{1}H_{11}^{1}N$ 100 n n n + n + 2 2 Potassium carbonate $K_{5}^{1}CO_{3}$ s + + + + + + + + + + + + + + 55% + + + 1 1 Propoinitrile $K_{5}^{1}CO_{3}^{1}$ s + + + + + + + + + + + + + + + + + +			S	+	+	+	+	+	+	+	+	+	+	
Priperidine $C_{9}^{1}H_{11}^{1}N$ 100 n n n + n n + 2 2 Potassium carbonate $K_{2}CO_{3}$ s + + + + + + + + + + + + + + 55% + + + 1 1 Propionitrile $CH_{3}CH_{2}CN$ 100 n n n + + + + + + + + + + + + + + + +	Priperidine $C_{5}^{0}H_{11}^{-1}N$ 100 n n n + n + 2 2 Potassium carbonate $K_{5}^{-}CO_{3}$ s + + + + + + + + + + + + + + + 55% + + + 1 2 Propionitrile $C_{1}^{0}H_{5}^{-}CO_{5}^{-}H_{5}$	Picric acid	C _E H ₂ (NO ₂) ₂ OH	S	+	+	+	+	+	+	+	-	+	+	2
Potassium carbonate	Proposition Carbonate	Piperidine	0 2' 3'3	100	-	-	n	n	+	-	-	-	n	+	2
Propionitrile CH_3CH_2CN 100 n n + + + + + + + + 2 Propionic acid C_2H_5COOH 100 o + + + + + + + + + + + + + + + 1 Propionic acid $C_2H_5COOC_3H_7$ 100 + + + 1 Propionic acid $C_3H_5COOC_3H_7$ 100 + + + + + + + + + + + + + + + +	Propionitrile CH_3CH_2CN 100 n n n + + + + + + + 2 Propionic acid C_2H_5COOH 100 o + + + + + + + + + + + + + + + + + 1 Propionic acid $C_2H_5COOC_3H_7$ 100 + + + + + + + + + + + + + + + +	•													
Propionic acid C_2H_5COOH 100 o + + + + + + + + + + + + + 0 + 1 Propyl acetate $CH_3COOC_3H_7$ 100 + + + + + + + + + + + + + + + +	Propionic acid C_2H_5COOH 100 o + + + + + + + + + + + + + + + 1 Propyl acetate $CH_3COOC_3H_7$ 100 + + + + + + + + + + + + + + + +											JJ /0			
Propyl acetate CH3COOC3H7 100 + + + + - +/0 - +/0 - + + 1 Propylene glycol CH3CHOHCH2OH 100 + + + + + + + + + + + + + + + + + +	Propyl acetate CH3COOC3H7 100 + + + + - + + 0 - + + 0 - + + + 1 Propylene glycol CH3CHOHCH2OH 100 + + + + + + + + + + + + + + + + + +	•				n	+	+	+	+	-	-	+	+	
Propylene glycol $CH_{3}CHOHCH_{2}OH$ 100 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Propylene glycol $CH_{3}CHOHCH_{2}OH$ 100 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Propionic acid	C ₂ H ₅ COOH	100	0	+	+	+	+	+	+	+/0	+	+	1
Propylene glycol $CH_{3}CHOHCH_{2}OH$ 100 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Propylene glycol $CH_{3}^{\circ}CHOHCH_{2}^{\circ}OH$ 100 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Propyl acetate	CH,COOC,H,	100	-	-	+	+	+	-	+/0	-	+	+	1
Pyridine $C_5H_5^2N$ 100 0 - + - 0 - 0 + + 2 Pyrrole $C_4H_4^2NH$ 100 n n n + n + 0 + + + 2 Pyrrole $C_4H_4^2NH$ 100 n n n + n + - 0 - 0 + + + 2 Pyrrole $C_4H_4^2NH$ 100 h + + + + + + + + + + + + + + + + + +	Pyridine $C_5H_5^1N$ 100 0 - + - 0 - 0 + + 2 Pyrrole $C_5H_5^1N$ 100 n n n + n + - 0 - 0 + + 2 Pyrrole $C_5H_5^1N$ 100 n n n + n + - 0 - 0 + + 2 Pyrrole $C_5H_5^1N$ 100 h + + + + + + + + + + + + + + + + + +		3 3 1		+	+									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		J												
Afficiary Hg a superior 100 +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•													
		Pyrrole	C ₄ H ₄ NH	100	n	n	+	n	+	-	-	-	+	+	2
		Mercury	Hg	100	+	+	+	+	+	+	+	+	+	+	3
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	•												
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		* ,													
Salicylic acid HOC ₆ H ₂ COOH s + + + + + + + + + + + + + + + + + +	Salicylic acid HOC ₆ H ₂ COOH s + + + + + + + + + + + + + + + + + +														
Salmiac NH_4CI s + + + + - + + + + + + + + + + + + 1 Ammonia solution "NH $_4OH$ " 30 + + + + + (25 °C) + - + + + + + + 2 Mitric acid HNO_3 99% 10% 50% o 65% 50% 50% 10% 35% 50% 65% 1	Salmiac NH_4Cl^2 s + + + + + - + + + + + + + + + + + 1 Ammonia solution " NH_4OH'' 30 + + + + + $(25 ^{\circ}C)$ + - + + + + + + 2 Mitric acid HNO_3 99% 10% 50% o $65\%^2$ 50% 50% 10% 35% 50% 65% 1	Mercury(II) nitrate	Hg(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	3
Salmiac NH ₄ Cl s + + + + - + + + + + + + + + + + 1 Ammonia solution "NH ₄ OH" 30 + + + + + (25 °C) + - + + + + + + 2 Nitric acid HNO ₃ 99% 10% 50% o 65% 50% 50% 10% 35% 50% 65% 1	Salmiac NH ₄ Cl s + + + + + - + + + + + + + + + 1 Ammonia solution "NH ₄ OH" 30 + + + + (25 °C) + - + + + + + 2 Nitric acid HNO ₃ 99% 10% 50% o 65% 50% 50% 10% 35% 50% 65% 1	Salicylic acid	HOC,H,COOH	S	+	+	+	+	+	+	+	+	+	+/0	1
Ammonia solution "N $\overset{\circ}{\text{H}}$,OH $^{\circ}$ ' 30 + + + + (25 °C) + - + + + + 2 ditric acid HNO $_3$ 99% 10% 50% o 65% 50% 50% 10% 35% 50% 65% 1	Ammonia solution "N $\overset{+}{\text{H}}$,OH" 30 + + + + (25 °C) + - + + + + 2 ditric acid HNO $_3$ 99% 10% 50% o 65% 3 50% 50% 10% 35% 50% 65% 1		0 4												
litric acid HNO ₃ 99% 10% 50% o 65% ²⁾ 50% 50% 10% 35% 50% 65% 1	vitric acid HNO ₃ 99% 10% 50% o 65% ³ 50% 50% 10% 35% 50% 65% 1														
<u> </u>	٠		4					, ,							
	Hydrochloric acid HCl 38% 32% + + + - + 0 0 + 0 1					50%	0	65%2	50%	50%	10%	35%	50%	65%	

Corrosive agent	Formula	Concentra- tion in %	Acryl	PVC	PP	PVDF	1.4404	FKM	EPDM	Phar- Med®	PE	Hastel- loyC	WGK
Salt water	-	S	+	+/0	+	+	+/0	+	+	+	+	+	1
Sulfur chloride	S ₂ Cl ₂	100	n	n	n	+	n	+	-	-	n	n	-
Disulfur dichloride	S,Cl,	100	n	n	n	+	n	+	-	-	n	n	-
Carbon disulfide	CS,	100	-	-	0	+	+	+	-	-	0	+	2
Sulfuric acid	H ₂ SO ₄	98%	30%	50%	85%	+	20%	+	80%	30%	80%	+	1
Sulfuric acid, furning	H ₂ SO ₄ + SO ₃	S	n	-	-	-	+	+	-	+	-	+	2
Sulfurous acid	H ₂ SO ₃	S	+	+	+	+	10%	+	+	+	+	+	1
Silver bromide	AgBr	S	+	+	+	+	+/0	+	+	+	+	+	1
Silver chloride	AgCl	S	+	+	+	+	-	+	+	+	+	+/0	1
Silver nitrate	AgNO ₃	S	+	+	+	+	+	+	+	+	+	+/0	3
Starch	(C ₆ H ₁₀ O ₅) _n	S	+	+	+	+	+	+	n	+	+	+	1
Styrene	C ₆ H ₅ CHCH ₂	100	-	-	0	+	+	0	-	-	0	+	2
Sulfuryl chloride	SO ₂ Cl ₂	100	-	-	-	0	n	+	0	-	-	n	1
Tetrachloroethane	C ₂ H ₂ CI ₄	100	-	-	0	+	+	0	-	0	0	+	3
Tetrachloroethylene	C ₂ Cl ₄	100	-	-	0	+	+	0	-	0	0	+	3
Tetrachloromethane	CCI ₄	100	-	-	-	+	+	+	-	-	0	+	3
Tetraethyllead	Pb(C ₂ H ₅) ₄	100	+	+	+	+	+	+	-	n	+	+	3
Tetrahydrofuran	C ₄ H ₈ O	100	-	-	0	-	+	-	-	-	0	+	1
Tetralin	C ₁₀ H ₁₂	100	-	-	-	+	+	+	-	-	0	+	3
Thionyl chloride	SOCI,	100	-	-	-	+	n	+	+	+	-	n	1
Thiophene	C ₄ H ₄ S	100	n	-	0	n	+	-	-	-	0	+	3
Titanium tetrachloride	TiCl	100	n	n	n	+	n	0	-	n	n	n	1
Toluene	C _E H _E CH ₃	100	-	-	0	+	+	0	-	-	0	+	2
Toluene diisocyanate	C ₂ H ₂ (NCO) ₂	100	n	n	+	+	+	-	+/0	n	+	+	2
Tributyl phosphate	(C,H,),PO,	100	n	-	+	+	+	-	+	+	+	+	1
Trichloroacetic acid	CCI,COOH	50	-	+	+	+	-	-	0	+/0	+	+	1
Trichloroethane	CCI,CH,	100	-	-	0	+	+	+	-	0	0	+	3
Trichloroethylene	C,HCI,	100	-	-	0	+	+/0	0	-	0	0	+	3
Triethanolamine	N(C ₂ H ₄ OH) ₂	100	+	0	+	n	+	-	+/0	0	+	+	1
Tricresyl phosphate	(C ₇ H ₇) ₂ PO ₄	90%	-	-	+	n	+	0	+	+	+	+	2
Trisodium phosphate	Na ₃ PO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Tris(2-ethylhexyl) phosphate	(C,H,,,),PO,	100	n	-	+	+	+	0	+	+	+	+	2
Hypochlorous acid	HOCI	s	+	+	0	+	-	+	+/0	+	0	+	1
Vinyl acetate	CH ₂ =CHOOCCH ₂	100	-	-	+	+	+	n	n	+/0	+	+	2
Hydrogen peroxide	H ₂ O ₂	90%	40%	40%*	30%	+	+	30%	30%	+	+	+	1
Tartaric acid	C,H,O,	S	50%	+	+	+	+	+	+/0	+	+	+	1
Xylene	C _e H _a (CH _a) _a	100	-	-	-	+	+	0	-	-	0	+	2
Zinc acetate	(CH ₃ COO) ₂ Zn	S	+	+	+	+	+	-	+	+	+	+	1
Zinc chloride	ZnCl ₂	S	+	+	+	+	-	+	+	+	+	n	1
Zinc sulfate	ZnSO	S	+	+	+	+	+	+	+	+	+	+/0	1
Tin(II) chloride	SnCl ₂	S	+	0	+	+	-	+	+	+	+	+/0	1
Tin(II) sulfate	SnSO	S	n	+	+	+	+	+	+	+	+	+/0	1
Tin(IV) chloride	SnCl,	S	n	+	+	+	-	+	+	+	+	+	1
Citric acid	C _e H _e O ₇	S	+	+	+	+	+	+	+	+	+	+	1
Sugar solution	-	s	+	+	+	+	+	+	+	+	+	+	1

 $^{^{\}scriptsize 1)}$ Chlorine dioxide is capable of penetrating PVDF without destroying it. This can lead to damage to PVDF-coated parts.

Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the Most Common Chemicals

This data applies to standard conditions (20 °C, 1,013 mbar).

+	resistant
0	conditionally resistant
-	not resistant

The data has been taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of a material also depends on other factors, especially pressure and operating conditions etc., this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional feed chemicals are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore replace application-specific documentation.

Corrosive agent	Concentration in %	Evaluation
Acetone	all	-
Acetylene tetrabromide	100	-
Alums of all kinds, aqueous	all	+
Aluminium salts, aqueous	all	+
Ammonium, aqueous	15	-
Ammonium, aqueous	saturated	-
Ammonium salts, aqueous	all	+
Aniline	100	-
Benzene	100	-
Bisulfite, aqueous	40	+
Borax solution	all	+
Boric acid, aqueous	10	+
Bromine, vaporous and liquid	-	-
Hydrogen bromide	10	+
Butanol	100	+
Butyric acid, aqueous	20	+
Butyric acid, aqueous	conc.	-
Butyl acetate	100	-
Calcium chloride, aqueous	all	+
Chlorinated hydrocarbons	all	-
Chrome-alum, aqueous	all	+
Chromic acid, aqueous	50	-
Dextrin, aqueous	saturated	+
Diesel oils, compressed oils	100	0
Diethyl ether	100	-
Fertilizing manure salt, aqueous	all	+
Ferric chloride, aqueous	all	+
Glacial acetic acid	100	-
Acetic ester	100	-
Acetic acid, aqueous	10	+
Acetic acid	50	0
Acetic acid (wine vinegar)	-	0
Acetic acid anhydride	100	-
Ethanol	96	-
Ethyl acetate	100	-
Ethylene glycol	30	+
Formaldehyde, aqueous	30	0
Difluorodichloromethane	100	-
Glycerol	100	-
Glucose, aqueous	saturated	+
Halogens	all	-
Urea, aqueous	all	+
Caustic potash	15	+
Potassium bichromate, aqueous	saturated	+
Potassium persulfate, aqueous	saturated	+
Creosote	-	-
Sodium chloride, aqueous	all	+
Carbonic acid	all	+
Copper sulfate, aqueous	all	+
Magnesium salts, aqueous	all	+

Corrosive agent	Concentration in %	Evaluation
Methyl alcohol	100	+
Methylene chloride	100	-
Sodium hypochlorite	15	+
Sodium salts	-	-
Sodium hydroxide solution	aqueous	+
Oils	-	-
Perchloric acid	all	0
Phenol, aqueous	all	0
Phosphoric acid, aqueous	100	-
Nitric acid, aqueous	25	+
Hydrochloric acid	15	+
Sulfur dioxide, gaseous	all	+
Carbon disulfide	100	-
Sulfuric acid	30	+
Hydrogen sulfide, gaseous	100	-
Silver nitrate	10	+
Tetrachloromethane	100	-
Ink	-	+
Toluene	100	-
Trichloroethylene	100	-
Hydrogen peroxide	up to 10	+
Xylene	100	-
Zinc salts	all	+

Your digital reference source. Wherever you want. Whenever you want.

Product catalogue 2023

Groundbreaking diversity: ProMinent 2023.

Our product catalogue is available in three individual volumes.

Metering Technology

Measuring, Control and Sensor Technology

Water Treatment and Disinfection

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview